
OPERATORS MANUAL D-NET DIESEL GENERATORS

33.0KW-60Hz 28.5KW-60Hz

25.5KW-60Hz

26.0KW-50Hz | 23.5KW-50Hz | 21.0KW-50Hz

EDE and EDEA MODELS SINGLE and THREE PHASE

150 JOHN HANCOCK ROAD • TAUNTON MA 02780-7319 • TEL. 1-508-823-7677

CALIFORNIA PROPOSITION 65 WARNING

Marine diesel and gasoline engine exhaust and some of its constituents are known to the State of California to cause cancer, birth defects, and other reproductive harm.

A WARNING

Exhaust gasses contain Carbon Monoxide, an odorless and colorless gas. Carbon Monoxide is poisonous and can cause unconsciousness and death. Symptoms of Carbon Monoxide exposure can include:

- Dizziness
- Throbbing in Temples

• Nausea

- Muscular Twitching
- Headache
- Vomiting
- Weakness and Sleepiness
- Inability to Think Coherently

IF YOU OR ANYONE ELSE EXPERIENCE ANY OF THESE SYMPTOMS, GET OUT INTO THE FRESH AIR IMMEDIATELY. If symptoms persist, seek medical attention. Shut down the unit and do not restart until it has been inspected and repaired.

A WARNING DECAL is provided by WESTERBEKE and should be fixed to a bulkhead near your engine or generator.

WESTERBEKE also recommends installing CARBON MONOXIDE DETECTORS in the living/sleeping quarters of your vessel. They are inexpensive and easily obtainable at your local marine store.

SAFETY INSTRUCTIONS

INTRODUCTION

Read this safety manual carefully. Most accidents are caused by failure to follow fundamental rules and precautions. Know when dangerous conditions exist and take the necessary precautions to protect yourself, your personnel, and your machinery.

The following safety instructions are in compliance with the American Boat and Yacht Council (ABYC) standards.

PREVENT ELECTRIC SHOCK

WARNING: Do not touch AC electrical connections while engine is running. Lethal voltage is present at these connections!

- Do not operate this machinery without electrical enclosures and covers in place.
- Shut off electrical power before accessing electrical equipment.
- Use insulated mats whenever working on electrical equipment.
- Make sure your clothing and skin are dry, not damp (particularly shoes) when handling electrical equipment.
- Remove wristwatch and all jewelry when working on electrical equipment.

PREVENT BURNS — HOT ENGINE

WARNING: Do not touch hot engine parts or exhaust system components. A running engine gets very hot!

Monitor engine antifreeze coolant level at the plastic coolant recovery tank and periodically at the filler cap location on the water jacketed exhaust manifold, but only when the engine is COLD.

A WARNING: Steam can cause injury or death!

■ In case of an engine overheat, allow the engine to cool before touching the engine or checking the coolant.

PREVENT BURNS — FIRE

A WARNING: Fire can cause injury or death!

- Prevent flash fires. Do not smoke or permit flames or sparks to occur near the fuel injector, fuel line, filter, fuel pump, or other potential sources of spilled fuel or fuel vapors. Use a suitable container to catch all fuel when removing the fuel lines or fuel filters.
- Do not operate with the air cleaner/silencer removed. Backfire can cause severe injury or death.
- Do not smoke or permit flames or sparks to occur near the fuel system. Keep the compartment and the engine clean and free of debris to minimize the chances of fire. Wipe up all spilled fuel and engine oil.
- Be aware diesel fuel will burn.

PREVENT BURNS — EXPLOSION

A WARNING: Explosions from fuel vapors can cause injury or death!

- Follow re-fueling safety instructions. Keep the vessel's hatches closed when fueling. Open and ventilate the cabin after fueling. Check below for fumes/vapor before running the blower. Run the blower per four minutes before starting your engine.
- All fuel vapors are highly explosive. Use extreme care when handling and storing fuels. Store fuel in a well-ventilated area away from spark-producing equipment and out of the reach of children.
- Do not fill the fuel tank(s) while the engine while it is running.
- Shut off the fuel service valve at the engine when servicing the fuel system. Take care in catching any fuel that might spill. DO NOT allow any smoking, open flames, or other sources of fire near the fuel system or engine when servicing. Ensure proper ventilation exists when servicing the fuel system.
- Do not alter or modify the fuel system.
- Be sure all fuel supplies have a positive shutoff valve.
- Be certain fuel line fittings are adequately tightened and free of leaks.
- Make sure a fire extinguisher is installed nearby and is properly maintained. Be familiar with its proper use. Extinguishers rated ABC by the NFPA are appropriate for all applications encountered in this environment.

SAFETY INSTRUCTIONS

ACCIDENTAL STARTING

A WARNING: Accidental starting can cause injury or death!

- Disconnect the battery cables before servicing the engine/ generator. Remove the negative lead first and reconnect it last
- Make certain all personnel are clear of the engine before starting.
- Make certain all covers, guards, and hatches are reinstalled before starting the engine.

BATTERY EXPLOSION

WARNING: Battery explosion can cause injury or death!

- Do not smoke or allow an open flame near the battery being serviced. Lead acid batteries emit hydrogen, a highly explosive gas, which can be ignited by electrical arcing or by lit tobacco products. Shut off all electrical equipment in the vicinity to prevent electrical arcing during servicing.
- Never connect the negative (—) battery cable to the positive (+) connection terminal of the starter solenoid. Do not test the battery condition by shorting the terminals together. Sparks could ignite battery gases or fuel vapors. Ventilate any compartment containing batteries to prevent accumulation of explosive gases. To avoid sparks, do not disturb the battery charger connections while the battery is being charged.
- Avoid contacting the terminals with tools, etc., to prevent burns or sparks that could cause an explosion. Remove wristwatch, rings, and any other jewelry before handling the battery.
- Always turn the battery charger off before disconnecting the battery connections. Remove the negative lead first and reconnect it last whenservicing the battery.

BATTERY ACID

WARNING: Sulfuric acid in batteries can cause severe injury or death!

■ When servicing the battery or checking the electrolyte level, wear rubber gloves, a rubber apron, and eye protection. Batteries contain sulfuric acid which is destructive. If it comes in contact with your skin, wash it off at once with water. Acid may splash on the skin or into the eyes inadvertently when removing electrolyte caps.

TOXIC EXHAUST GASES

A WARNING: Carbon monoxide (CO) is a deadly gas!

- Ensure that the exhaust system is adequate to expel gases discharged from the engine. Check the exhaust system regularly for leaks and make sure the exhaust manifold/water-injected elbow is securely attached.
- Be sure the unit and its surroundings are well ventilated. Run blowers when running the generator set or engine.
- Don't run the generator set or engine unless the boat is equipped with a functioning marine carbon monoxide detector that complies with ABYCA-24. Consult your boat builder or dealer for installation of approved detectors.
- For additional information refer to ABYC T-22 (educational information on Carbon Monoxide).

WARNING: Carbon monoxide (CO) is an invisible odorless gas. Inhalation produces flu-like symptoms, nausea or death!

- Do not use copper tubing in diesel exhaust systems. Diesel fumes can rapidly destroy copper tubing in exhaust systems. Exhaust sulfur causes rapid deterioration of copper tubing resulting in exhaust/water leakage.
- Do not install exhaust outlet where exhaust can be drawn through portholes, vents, or air conditioners. If the engine exhaust discharge outlet is near the waterline, water could enter the exhaust discharge outlet and close or restrict the flow of exhaust. Avoid overloading the craft.
- Although diesel engine exhaust gases are not as toxic as exhaust fumes from gasoline engines, carbon monoxide gas is present in diesel exhaust fumes. Some of the symptoms or signs of carbon monoxide inhalation or poisoning are:

Vomiting Dizziness Headache

Nausea

Inability to think coherently Throbbing in temples Muscular twitching Weakness and sleepiness

AVOID MOVING PARTS

A WARNING: Rotating parts can cause injury or death!

■ Do not service the engine while it is running. If a situation arises in which it is absolutely necessary to make operating adjustments, use extreme care to avoid touching moving parts and hot exhaust system components.

SAFETY INSTRUCTIONS

- Do not wear loose clothing or jewelry when servicing equipment; avoid wearing loose jackets, shirts, sleeves, rings, necklaces or bracelets that could be caught in moving parts.
- Make sure all attaching hardware is properly tightened. Keep protective shields and guards in their respective places at all times.
- Do not check fluid levels or the drive belt's tension while the engine is operating.
- Stay clear of the drive shaft and the transmission coupling when the engine is running; hair and clothing can easily be caught in these rotating parts.

HAZARDOUS NOISE

WARNING: High noise levels can cause hearing loss!

- Never operate an engine without its muffler installed.
- Do not run an engine with the air intake (silencer) removed.

A WARNING: Do not work on machinery when you are mentally or physically incapacitated by fatigue!

OPERATORS MANUAL

Many of the preceding safety tips and warnings are repeated in your Operators Manual along with other cautions and notes to highlight critical information. Read your manual carefully, maintain your equipment, and follow all safety procedures.

ENGINE AND GENERATOR INSTALLATIONS

Preparations to install an engine should begin with a thorough examination of the American Boat and Yacht Council's (ABYC) standards. These standards are a combination of sources including the USCG and the NFPA.

Sections of the ABYC standards of particular interest are:

H-32 Ventilation for boats using diesel fuel

H-33 Diesel Fuel Systems

P-1 Installation of Exhaust Systems for Propulsion and Auxilliary Engines

P-4 Marine Inboard Engines and Transmissions

E-11 AC & DC Electrical Systems on Boats

TA Batteries and Battery Chargers

All installations must comply with the Federal Code of Regulations (FCR).

ABYC, NFPA AND USCG PUBLICATIONS FOR INSTALLING MARINE ENGINES AND GENERATORS

Read the following ABYC, NFPA and USCG publications for safety codes and standards. Follow their recommendations when installing your UNIVERSAL engine

ABYC (American Boat and Yacht Council) "Safety Standards for Small Craft"

Order From:

ABYC

613 Third Dtreet, Suite 10 Annapolis, MD 21403 (410) 990-4460 www.abycinc.org

NFPA (National Fire Protection Association) "Fire Protection Standard for Motor Craft"

Order From:

NFPA

1 Batterymarch Park
P.O. Box 9101
Quincy, MA 02269-9101
USCG (United States Coast Guard)
"CFR 33 AND CFR46"
Code of Federal Regulations
Order From:

U.S. Government Printing Office Washington, D.C. 20404

INSTALLATION

When installing WESTERBEKE engines and generators it is important that strict attention be paid to the following information:

CODES AND REGULATIONS

Strict federal regulations, ABYC guidelines, and safety codes must be complied with when installing engines and generators in a marine environment.

SIPHON-BREAK

For installations where the exhaust manifold/water injected exhaust elbow is close to or will be below the vessel's waterline, provisions must be made to install a siphonbreak in the raw water supply hose to the exhaust elbow. This hose must be looped a minimum of 20" above the vessel's waterline. Failure to use a siphon-break when the exhaust manifold injection port is at or below the load waterline will result in raw water damage to the engine and possible flooding of the boat.

If you have any doubt about the position of the water-injected exhaust elbow relative to the vessel's waterline under the vessel's various operating conditions, *install a siphon-break*.

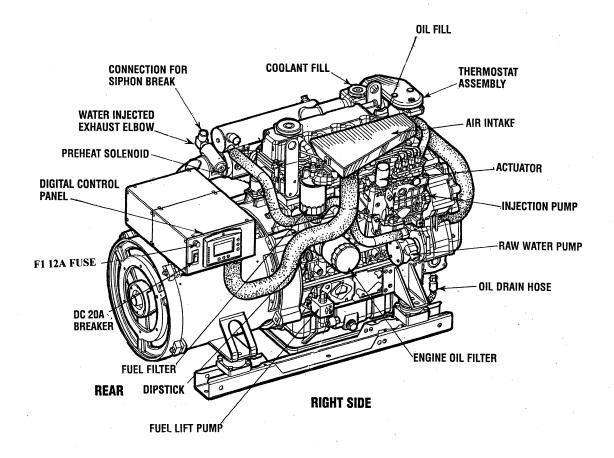
NOTE: A siphon-break requires periodic inspection and cleaning to ensure proper operation. Failure to properly maintain a siphon-break can result in catastrophic engine damage. Consult the siphon-break manufacturer for proper maintenance.

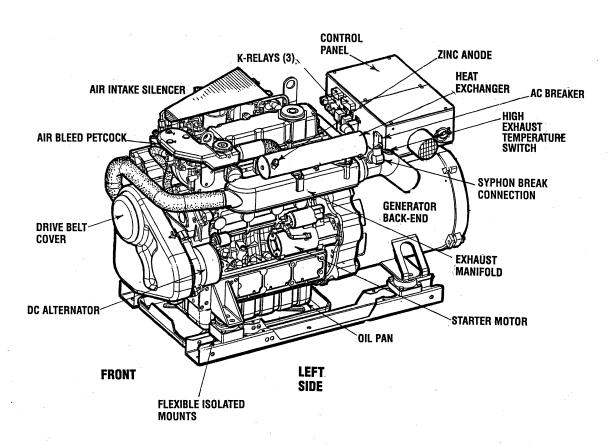
AVAILABLE FROM YOUR WESTERBEKE DEALER SIPHON-BREAK WITH STAINLESS LOOP FOR 1" HOSE PART NO. 044010

EXHAUST SYSTEM

The exhaust system's hose MUST be certified for marine use. Corrugated Marine Exhaust Hose is recommended. The use of this type of hose allows for extreme bends and turns without the need of additional fitting and clamps to accomplish these bends and turns. In this regard, a single length of corrugated exhaust hose can be used. The system MUST be designed to prevent the entry of water into the exhaust system under any sea conditions and at any angle of vessels heal.

A detailed Marine Installation Manual covering gasoline and diesel engines and generators is supplied with every unit sold. This manual is also available in pdf format on our website to download


Website: www.westerbeke.com


TABLE OF CONTENTS

Parts Identification	2
Introduction	
Fuel, Engine Oil and Engine Coolant	
Preparations for Initial Start-Up	
Digital Control Panel	
Manual Engine Shut-off	7 7
Generator Break-In Procedure	
•	
Daily Routine	
Maintenance Schedule	
Fuel System	
Cooling System	13
Raw Water Intake	
Draining the Raw Water System	
Fresh Water Cooling Circuit	
Changing the Coolant	
Thermostat	
Raw Water Cooling Circuit	
Heat Exchanger	16
Raw Water Pump	16
Engine Lubrication Oil	17
Engine Oil Change	
Digital Control Box	18
Frequency Adjustment	
Digital Control Box (Early Models)	
Frequency Adjustment	19
Engine Troubleshooting (LCD Display).	20
Engine Adjustments	
Driving Belt Adjustment	
Fuel Injectors	
Testing the Magnetic Pick-Up	22
Installing the Magnetic Pick-Up	22
Testing Oil Pressure	23
Checking Valve Clearance	23
Valve Adjustment	

GIOW Plugs	24
Inspection and Testing	24
Alternators	
Testing and Troubleshooting	
Battery Care	
Starter Motor	28
Testing with Electrical Jumper	28
Testing with a Screwdriver	29
Removing for Service	30
Raw Water Pump (Exploded View)	
Specifications (EDEA)	
Specifications (EDE)	34
Wiring Diagram #52951-12V	37
#53901-24V	38
#54533-24V ungrounded	39
Generator Information	40
Twelve Lead Winding Connections	41
Voltage Sensing	
Electronic Regulation (AVR)	
Internal Wiring Diagram	
Shore Power Transfer Switch	46
Lay-up and Recommissioning	
Metric Conversion Data (Chart)	
Suggested Spares	
Suggested Spares	50
Remote Stop/Start Panel (Optional)	51
LCD Panel Extension Cables (Optional)	
Remote Oil Filter (Optional)	
Block Heater - 33/28.5KW (Optional)	
Water Heater Installation (Optional)	53

PARTS IDENTIFICATION

INTRODUCTION

This WESTERBEKE Diesel Generator is a product of WESTERBEKE's long years of experience and advanced technology. We take great pride in the superior durability and dependable performance of our engines and generators. Thank you for selecting WESTERBEKE.

In order to get the full use and benefit from your generator it is important that you operate and maintain it correctly. This manual is designed to help you do this. Please, read this manual carefully and observe all the safety precautions throughout. Should your generator require servicing, contact your nearest WESTERBEKE dealer for assistance.

This is your operators manual. Along with this manual, there is an Installation Manual and Parts Information. A Service Manual is available in pdf form on our website or can be ordered in book form from a WESTERBEKE/UNIVERSAL Dealer

WARRANTY PROCEDURES

Your WESTERBEKE Warranty Statement is included in the product documentation package. There is a Warranty Registration Card you can fill out and mail to Westerbeke Corporation or go to our website:www.westerbeke.com and register your products warranty on line. You should receive a Customer Identification card in the mail within 60 days of registering. If you do not, please contact the factory and have your product model number, serial number and in service date available.

Customer Identification Card

Customer Identification
MR. GENERATOR OWNER
MAIN STREET

HOMETOWN, USA

Model

Serial #

Expires

NOTES, CAUTIONS AND WARNINGS

As this manual takes you through the operating procedures, maintenance schedules, and troubleshooting of your marine engine, critical information will be highlighted by NOTES, CAUTIONS, and WARNINGS. An explanation follows:

NOTE: An operating procedure essential to note.

CAUTION: Procedures, which if not strictly observed, can result in the damage or destruction of your engine.

WARNING: Procedures, which if not properly followed, can result in personal injury or loss of life.

PRODUCT SOFTWARE

Product software, (tech data, parts lists, manuals, brochures and catalogs), provided from sources other than WESTERBEKE are not within WESTERBEKE's control. WESTERBEKE CANNOT BE RESPONSIBLE FOR THE CONTENT OF SUCH SOFTWARE, MAKES NO WARRANTIES OR REPRESENTATIONS WITH RESPECT THERETO, INCLUDING ACCURACY, TIMELINESS OR COMPLETENESS THEREOF AND WILL IN NO EVENT BE LIABLE FOR ANY TYPE OF DAMAGE OR INJURY INCURRED IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING OR USE OF SUCH SOFTWARE. WESTERBEKE customers should also keep in mind the time span between printings of WESTERBEKE product software and the unavoidable existence of earlier WESTERBEKE manuals. In summation, product software provided with WESTERBEKE products, whether from WESTERBEKE or other suppliers, must not and cannot be relied upon exclusively as the definitive authority on the respective product. It not only makes good sense but is imperative that appropriate representatives of WESTERBEKE or the supplier in question be consulted to determine the accuracy and currentness of the product software being consulted by the customer.

PROTECTING YOUR INVESTMENT

Care at the factory during assembly and thorough testing have resulted in a WESTERBEKE generator capable of many thousands of hours of dependable service. However the manufacturer cannot control how or where the generator is installed in the vessel or the manner in which the unit is operated and serviced in the field. This is up to the buyer/owner-operator.

NOTE: Six important steps to ensure long generator life:

- Proper engine and generator installation and alignment.
- An efficient well-designed exhaust system that includes an anti-siphon break to prevent water from entering the engine.
- Changing the engine oil and oil filters according to the maintenance schedule.
- Proper maintenance of all engine and generator components according to the maintenance schedule in this manual.
- Use clean, filtered #2 diesel fuel.
- Winterize your engine according to the "Lay-up and Recommissioning" section in this manual.

INTRODUCTION

SERIAL NUMBER LOCATION

The engine's model and serial number are located on a nameplate mounted on the side of the water jacketed exhaust manifold.

The engine's serial number is also found stamped in the engine block on a flat surface just above the the side oil fill opening. Take time to enter this information below on the illustrated nameplate.

50 HZ.	60 HZ.
	/
	50 HZ.

An identification plate on the top of the engine air intake also displays the engine model and serial number.

CARBON MONOXIDE DETECTOR

WESTERBEKE recommends mounting a carbon monoxide detector in the vessels living quarters. Carbon monoxide, even in small amounts, is deadly.

The presence of carbon monoxide indicates an exhaust leak from the engine or generator or from the exhaust elbow/exhaust hose, or the fumes from a nearby vessel are entering your boat.

If carbon monoxide is present, ventilate the area with clean air and correct the problem immediately!

NOTE: A carbon monoxide warning decal has been provided by WESTERBEKE. Affix this decal in a visible position in the engine room.

UNDERSTANDING THE DIESEL ENGINE

The diesel engine closely resembles the gasoline engine, since the mechanism is essentially the same. The cylinders are arranged above a closed crankcase; the crankshaft is of the same general type as that of a gasoline engine; and the diesel engine has the same types of valves, camshaft, pistons, connecting rods and lubricating system.

Therefore, to a great extent, a diesel engine requires the same preventive maintenance as a gasoline engine. The most important factors are proper ventilation and proper maintenance of the fuel, lubricating and cooling systems. Replacement of fuel and lubricating filter elements at the time periods specified is a must, and frequent checking for contamination (that is, water, sediment, etc.) in the fuel system is also essential. Another important factor is the use of the same brand of high detergent diesel lubrication oil designed specifically for diesel engines.

The diesel engine does differ from the gasoline engine, however, in its method of handling and firing of fuel. The carburetor and ignition systems are done away with and in their place is a single component – the fuel injection pump – which performs the function of both.

ORDERING PARTS

Whenever replacement/service parts are needed, always provide the generator model number, engine serial number, and generator serial number as they appear on the silver and black name plate located on the generator end. You must provide us with this information so we may properly identify your generator set. In addition, include a complete part description and part number for each part needed (see the separately furnished Parts List). Also insist upon WESTERBEKE packaged parts because will fit or generic parts are frequently not made to the same specifications as original equipment.

SPARES AND ACCESSORIES

Certain spares will be needed to support and maintain your WESTERBEKE generator. Your local WESTERBEKE dealer will assist you in preparing an inventory of spare parts. See the *SPARE PARTS* page in this manual. For Engine and Generator Accessories, see the *ACCESSORIES* brochure.

INSTALLATION MANUAL

The Westerbeke Installation Manual publication #043268 is supplied with this unit.

DIESEL FUEL, ENGINE OIL AND ENGINE COOLANT

DIESEL FUEL

Use a diesel fuel that meets the requirements of No. 2-D SAE J 313 and has a Cetane rating of #45 or higher grade of diesel fuel according to ASTM D975

Care Of The Fuel Supply

Use only clean diesel fuel! The clearance of the components in your engines fuel injection pump is very critical; invisible dirt particles which might pass through the primary and secondary filters can damage these finely machined parts. It is important to buy clean fuel, and keep it clean. The best fuel can be rendered unsatisfactory by careless handling or improper storage facilities. To ensure that the fuel going into the tank for your engine's daily use is clean and pure, the following practice is advisable:

Purchase a well-known brand of fuel. The use of additives to combat BACTERIAL growth in the fuel tank is recommended such as Bio-Bor and an additive such as Diesel Kleen + Cetane Boost to help restore lubricity back into the diesel fuel when an Ultra Low Sulfur diesel is being used.

Install and regularly service a good, visual-type fuel filter/water separator between the fuel tank and the engine. The Raycor 500 MA or 230 RMAM are good examples of such filters. A 10 micron filter element is recommended.

ENGINE OIL

Use a heavy duty diesel oil with an API classification of CF, CG-4, CH-4 or CI-4. Change the engine oil and filter after an initial 50 hours of break-in operation. Then follow the oil and filter change intervals as specified in the MAINTENANCE SCHEDULE in this manual. Westerbeke Corporation does not approve or disapprove the use of synthetic oils. If synthetic oils are used, engine break-in must be performed using conventional oil. Oil change intervals must be as listed in the MAINTENANCE SCHEDULE section of this manual and not be extended if synthetic oils are used.

NOTE: The information above supersedes all previous statements regarding synthetic oil.

SAE OIL VISCOSITY

For all temperature ranges: SAE 15W-40 or SAE 10W-40.

ENGINE COOLANT

WESTERBEKE recommends a mixture of 50% antifreeze and 50% distilled water. Distilled water is free from the chemicals that can corrode internal engine surfaces.

The antifreeze performs double duty. It allows the engine to run at proper temperatures by transferring heat away from the engine to the coolant, and lubricates and protects the cooling circuit from rust and corrosion. Look for a good quality antifreeze that contains Supplemental Cooling Additives (SCAs) that keep the antifreeze chemically balanced, crucial to long term protection.

The distilled water and antifreeze should be premixed before being poured into the cooling circuit.

NOTE: Look for the new environmentally-friendly long lasting antifreeze that is now available.

PURCHASING ANTIFREEZE

Select a brand of antifreeze specified for diesel engines. Antifreeze specified for diesel engines contains a special additive to protect against cavitation erosion of the engine's cylinder walls. Prestone and Zerex are two nationally known brands that offer antifreeze specifically for use in diesel engines. Select the pre-mixed variety so that the correct mixture will always be added to the cooling system when needed. Change the antifreeze mixture according to the MAINTENANCE SCHEDULE in this manual.

MAINTENANCE

Change the engine coolant every five years regardless of the number of operating hours as the chemical additives that protect and lubricate the engine have a limited life.

COOLANT RECOVERY TANK

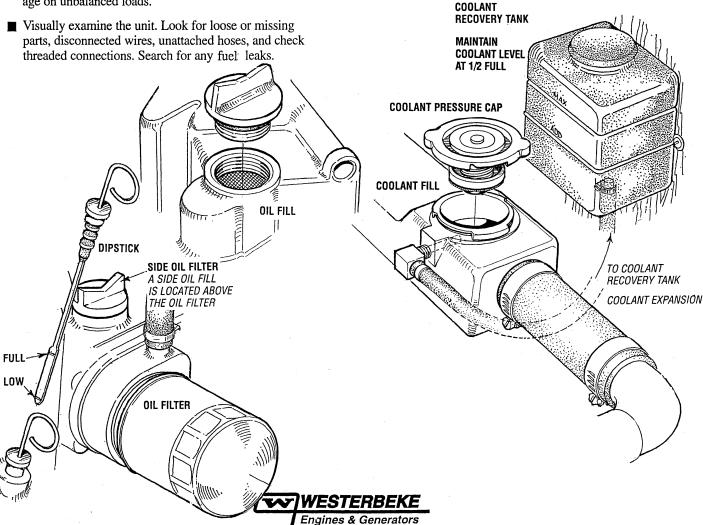
The coolant recovery tank allows for the expansion and contraction of the engines coolant during engine operation without introducing air into the system. This recovery tank is provided with fresh water cooled models and with the fresh water coolant conversion kit and must be installed before operating the engine.

NOTE: This tank, with its short run of plastic hose, is best located at or above the level of the engine's manifold, but it can be located below the level of the engine's manifold if the particular installation makes this necessary.

PREPARATIONS FOR INITIAL START-UP

PRESTART INSPECTION

Before starting your generator for the first time or after a prolonged layoff, check the following items:

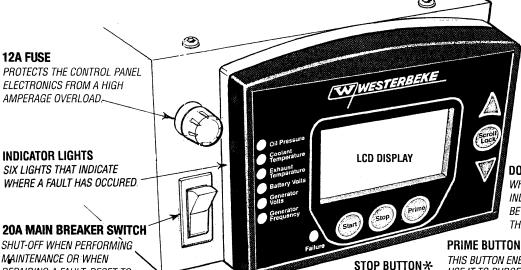

- Make certain the cooling water thru-hull petcock is open.
- Check the engine oil level: add oil to maintain the level at the full mark on the dipstick.
- Check the fuel supply and examine the fuel filter/separator bowls for contaminants.
- Check the DC electrical system. Inspect wire connections and battery cable connections.
- Check load leads for correct connections as specified in the wiring diagrams.
- Examine the air inlet and outlet for air flow obstructions (Soundguard).
- Be sure no other generator or utility power is connected to the load lines.
- Be sure that in power systems with a neutral line that the neutral is properly grounded (or ungrounded) as the system requires, and that generator neutral is properly connected to the load neutral. In single phase systems an incomplete or open neutral can supply the wrong line-to-neutral voltage on unbalanced loads.

CAUTION: When starting the generator, it is recommended that all AC loads, especially large motors, be switched OFF until the engine has come up to speed and, in cold climates, starts to warm up. This precaution will prevent damage caused by unanticipated operation of the AC machinery and will prevent a cold engine from stalling.

■ Check the coolant level in both the plastic recovery tank and at the manifold.

NOTE: After the initial running of the generator, the air in the engine's cooling system will be purged to the coolant recovery tank. Open the air bleed petcock to ensure that the cooling system is purged of air. After shutdown and after the engine has cooled, the coolant from the recovery tank will be drawn into the engine's cooling system to replace the purged air.

Before subsequent operation of the generator, the engine's manifold should be topped off, and the coolant recovery tank may need to be filled to the MAX level.


DIGITAL CONTROL PANEL

DESCRIPTION

WESTERBEKE'E Digital Control Panel provides the operator with an LCD display that contunuously monitors all the operations of the generator in easy to understand text messages.

CONTROL BOX

Note that the design and size of the control box will vary depending on the model generator.

START BUTTON

STARTS THE ENGINE

LCD DISPLAY

STOPS THE ENGINE

Operating temperatures may cause the LCD display to vary in color. This is normal and a change in color will not affect the operation on the control panel.

Periodically clean the control panel LCD screen using a soft cloth.

UP AND DOWN ARROWS WHEN THE LCD DISPLAY IS IN ITS SCROLL MODE, THE UP AND DOWN ARROWS CAN BE USED TO ADJUST THE DARK AND LIGHT CONTRAST

UP-ARROW

WHEN IN SCROLL LOCK MODE INDIVIDUAL FUNCTIONS CAN BE MONITORED BY PRESSING THE UP-ARROW.

SCROLL LOCK

STOPS RUN SEQUENCE SO-THAT A SINGLE FUNCTION CAN BE MONITORED

DOWN-ARROW

WHEN IN SCROLL LOCK MODE INDIVIDUAL FUNCTIONS CAN BE MONITORED BY PRESSING THE **DOWN-ARROW**.

THIS BUTTON ENERGIZES THE FUEL PUMP. USE IT TO PURGE THE FUEL SYSTEM OF AIR AFTER PERFORMING REPAIRS TO THE ENGINE'S FUEL SYSTEM OR SERVICING THE ON ENGINE FUEL FILTERS.

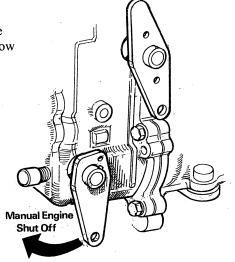
NOTE: OPTIONAL EXTENSION CABLES ARE AVAILABLE TO RE-LOCATE THE LCD PANEL TO A REMOTE LOCATION OR TO ADD ADDITIONAL LCD PANELS. REFER TO THE TABLE OF CONTENTS.

A RED LIGHT WILL APPEAR IF

THE RUN SEQUENCE IS INTERUPTED BY A FAILURE.

FAILURE LIGHT

LCD DISPLAY SEQUENCE

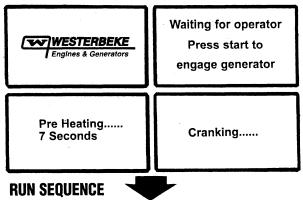

IS SHOWN ON THE FOLLOWING PAGE

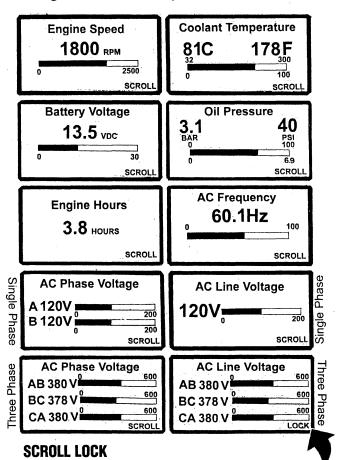
*MANUAL ENGINE SHUT-OFF

REPAIRING A FAULT. RESET TO

RESTART THE ENGINE.

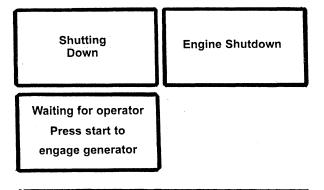
Should the engine fail to stop when the fuel shut off solenoid is de-energised when the STOP button is depressed. The engine is equiped with a manual shut-off lever. This is located just below the fixed throttle lever on the side of the engine block below the fuel injection pump. Move this lever to the left and hold it there until the engine comes to a stop. Then release.



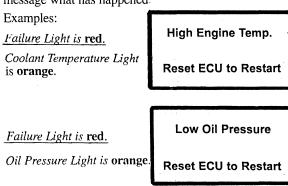

DIGITAL CONTROL PANEL/LCD SEQUENCE

START SEQUENCE

With the pre-start inspection completed, press the START button and the automatic sequence will begin. The six indicator lights will illuminate green and the panel will display the following text:


As the display cycles thru the engine functions, the speed will come up to 1800 rpms-60Hz (1500 rpms-50Hz) and the oil pressure and engine coolant will rise to their normal readings. The functions will cycle in the following sequemce:

To stop the continuing sequence, press the SCROLL LOCK button. This enables the operator to monitor a single function for any length of time. The word LOCK will appear in the corner. Use the up and down arrows to find and observe other functions. To resume scrolling, press the SCROLL LOCK button again. **WESTERBEKE**


STOP SEQUENCE

To stop the generator, press the STOP button. The display will cycle thru the following text messages and shutdown.

FAILURE LIGHT/SHUTDOWN

If a problem occurs, the generator will shutdown and the FAILURE light will illuminate red. In addition, one of the indicator lights will change from green to orange to reveal where the trouble has occured and the display will text message what has happened

When a failure occurs, refer to the troubleshooting chart, wiring diagram, and general operating text in this manual to assist in solving the trouble.

There are many combinations of messages that can be displayed but they are all self explanatory and the operator can easily isolate and correct the problem should one occur.

Before being able to re-start the generator, the fault must be cleared from the ECU. To do this, turn OFF the DC breaker on the Control Box and turn it right back on. This will clear the fault and allow the unit to be started.

NOTE: Three phase voltages will vary depending on the AC output configuration of the generator.

and Frequency Adjustments are on the following page.

Engines & Generators

GENERATOR BREAK-IN PROCEDURE

DESCRIPTION

Although your engine has experienced a minimum of one hour of test operations at the factory to make sure accurate assembly procedures were followed and that the engine operated properly, a break-in time is required. The service life of your engine is dependent upon how the engine is operated and serviced during its initial hours of use.

Breaking-in a new engine basically involves seating the piston rings to the cylinder walls. Excessive oil consumption and smoky operation indicate that the cylinder walls are glazed or scored, which is caused by overloading the engine during the break-in period.

Your new engine requires approximately 50 hours of initial conditioning operation to break in each moving part in order to maximize the performance and service life of the engine. Perform this conditioning carefully, keeping in mind the following:

Start the engine according to the *STARTING PROCEDURE* section. Run the engine while checking that all systems (raw water pump, oil pressure, battery charging) are functioning.

AFTER START-UP

Once the generator has been started, check for proper operation and then encourage a fast warm-up. Run the generator between 20% and 60% of full-load for the first 10 hours.

After the first 10 hours of the generator's operation, the load can be increased to the full-load rated output, then periodically vary the load.

Avoid overload at all times. An overload is signaled by smoky exhaust with reduced output voltage and frequency. Monitor the current being drawn from the generator and keep it within the generator's rating. Since the generator operates at 1800 rpm to produce 60 hertz (or at 1500 rpm to produce 50 Hertz), control of the generator's break-in is governed by the current drawn from the generator.

NOTE: Be aware of motor starting loads and the high current draw required for starting motors. This starting amperage draw can be 3 to 5 times normal running amperage. See GENERATOR INFORMATION in this manual.

GENERATOR ADJUSTMENTS

Once the generator has been placed into operation and during the initial 50 hours of break-in operation or after, the no-load AC voltage output may need adjustment using the voltage pod on the AVR found in the generators control box. Review the GENERATOR section of this manual for information.

THE DAILY ROUTINE

CHECK LIST

Follow this check list each day before starting your generator.

- Check that all generator circuit breakers (power panel) are in the off position before starting.
- Record the hourmeter reading in your log (engine hours relate to the maintenance schedule.)

Any deficiency or problems in the following items must be corrected before start up.

- Visually inspect the engine for fuel, oil, or water leaks.
- Check the oil level (dipstick).
- Check the coolant level in the coolant recovery tank.
- Check your fuel supply.
- Check the starting batteries (weekly).
- Check drive belts for wear and proper tension (weekly).

CHECK WITH THE ENGINE RUNNING.

- Check for abnormal noise such as knocking, vibrating and blow-back sounds.
- Confirm exhaust smoke:

 When the engine is cold White Smoke.

 When the engine is warm almost Smokeless.

 When the engine is overloaded some Black Smoke.

NOTE: Some unstable running may occur in a cold engine. This condition should abate as normal operating temperature is reached and loads are applied.

CAUTION: Do not operate the generator for long periods of time without a load being placed on the generator.

STOPPING THE GENERATOR

Remove the AC loads from the generator one at a time. Allow the generator to run for 3-5 minutes to stabilize the operating temperature, then momentarily depress the stop button and release. The generator will automatically shut down. Turn off the DC circuit breaker to prevent unintentional starts as a safety precaution.

There is a small DC amperage drain from the starting battery when the generator is not in use. To prevent this draw, turn off the DC breaker on the generators control panel (or turn off the DC battery switch to the generator).

MAINTENANCE SCHEDULE

WARNING: Never attempt to perform any service while the engine is running. Wear the proper safety equipment such as goggles and gloves, and use the correct tools for each job. When servicing/replacing DC components, turn off the DC circuit breaker on the control panel, or turn off the battery switch.

CHEDULED MA	INTENANCE	EXPLANATION OF SCHEDULED MAINTENANCE	
Maintenance pro	ocedures are all detailed in this manual.		
DAILY CHECK	BEFORE START-UP		
Coolant Level		Check at recovery tank, if empty, check at manifold. Add coolant if needed.	
Engine Oil Level		Oil level should indicate between MAX and LOW on dipstick. Do not overfill!	
Fuel/Water Sepa	arator (owner installed)	Check for water and dirt in fuel. Drain filter if necessary. Replace filter every 250 operating hours or once a year.	
Fuel Supply		Use properly filtered #2 diesel with a Cetane rating of #45 or higher. Check that there is adequate fuel for the vessel's needs.	
Visual Inspectio	NOTE: Please keep engine surface clean. Dirt and oil will inhibit the engine's ability to	Check for fuel, oil and water and exhaust leaks. Check that the water injected exhaust elbow securing v-clamp is tight. No exhaust leaks around the elbow. Inspect wiring and electrical connections. Look for loose bolts/hardware and correct as needed.	
Drive Belts	remain cool.	Inspect for frayed edges. Belts must be tight .	
INITIAL 50 HO	URS OF OPERATION	· · · · · · · · · · · · · · · · · · ·	
Engine Oil and I	Filter	Initial engine oil and filter change at 50 hours.	
Exhaust System	1	Check security of water injected exhaust elbow to exhaust manifold. Ensure there are no leaks.	
'Valve Adjustme	ent	Check adjustment of valves.	
Inlet Fuel Filter		Remove and replace inlet fuel filter.	
Fuel Filter		Remove and replace fuel filter and all sealing O-rings.	
Generator		Check that AC connections are secure with no chafing.	
EVERY 50 OPE	RATING HOURS OR MONTHLY		
Drive Belt		Inspect for proper tension (3/8" to 1/2" deflection) and adjust if needed. Check belt for slipping, cracking and wear. Adjust tension or replace as needed. Replace cover.	
Starting Batterie	s	Check electrolyte levels Make sure cables and connections are in good order. Clean off corrosion if needed. Apply petroleum jelly to terminals for corrosion protection.	
Electric Fuel Pur	mp	Inspect for leaks, ensure fuel and electrical connections are clean and tight.	
Zinc Anode		Inspect and clean zinc anode. Replace if necessary. Note the condition, then determine your own inspection schedule.	
EVERY 100 OP	PERATING HOURS OR YEARLY		
Engine Oil and F	Filter	Change engine oil and filter at 100 operating hours or yearly	
Air Intake and Fi	ilter (if applicable)	Keep air intake clear of obstructions. Clean air filter (if applicable)	

^{*}WESTERBEKE recommends this service be performed by an knowledgeable mechanic.

CAUTION (WESTERLINK or NMEA-2000): The electronic components in the Digital Diesels draw a very small amount of amperage (milli-amps) from the generator's starting battery when the unit is in a static state. This maybe as much as 50 milli-amps for the system ECU and 50 milli-amps for each display. This can be as much as 72 amp-hours in a months time with no generator use. It is not necessary to be concerned with this slight amperage draw during normal seasonal use. However, if the generator set is not to be used for a number of months, such as winter storage, it is best to disconnect the DC power to the generator with a NMEA-2000 system or shut off the DC breaker on the generator's control box for a WESTERLINK system.

NOTE: Keep in mind that the Westerbeke generator maybe the DC power supply for the vessel's NMEA-2000 network.

MAINTENANCE SCHEDULE

NOTE: Use the engine hourmeter gauge to log your engine hours or record your engune hours running time.

SCHEDULED MAINTENANCE

EXPLANATION OF SCHEDULED MAINTENANCE

Exhaust Elbow/Exhaust System	Check the structural integrity of the water injected exhaust elbow casting. Check the integrity	
	of the exhaust system attached to the elbow. All hose connections should be secure. No chaffing. No exhaust leaks. Hoses and muffler are in good serviceable condition.	
	NOTE: An exhaust leak will cause exposure to diesel exhaust!	
Fuel Filter and O-Rings	Remove and replace fuel filter and all sealing O-rings.	
Inlet Fuel Filter	Remove and replace inlet fuel filter.	
Generator	Check that AC connections are clean and secure. Ensure wires have no chafing. See <i>GENERATOR INFORMATION</i> .	
Hoses	Engine hoses should be firm and tight. Replace if hoses become spongy, brittle or delaminated. Check and tighten all hose clamps as needed.	
Fuel Water Separator Filter	Inspect bowl for dirt or water in fuel. Drain and replace filter.	
DC Alternator	Inspect wiring, connections should be tight. Alternator should be clean and free of corrosion. Check mounting bracket and alternator bolt. All should be tight.	
EVERY 500 OPERATING HOURS OR FIVE YEARS		
Raw Water Pump	Remove and disassemble the pump and inspect all parts: drive gear, pump shaft, wear plate and cover for wear and corrosion. Replace the impeller and gasket. Lubricate the impeller at re-assembly.	
Coolant System	Drain, flush and re-fill the cooling system with appropriate antifreeze mix. Inspect the condition of the sealing gaskets of the pressure cap. Clean out coolant recovery tank and connecting hose.	
Valve Clearances	Adjust valves. (Incorrect valve clearance will result in poor engine performance.)	
Starter Motor	Check solenoid and motor for corrosion. Remove and lubricate. Clean and lubricate the starte motor pinion drive	
Fuel Injectors	Check and adjust injection opening pressure and spray conditions.	
Re-Torque Cylinder Head Hold Down Bolts	Re-torque bolts. Engine cold, then check the valve clearance adjustments.	
Pre-Heat Circuit	Check operation of preheat solenoid. Remove glow plugs, clean tips and check operation.	
	VE YEARS	

^{*}WESTERBEKE recommends this service be performed by an knowledgeable mechanic.

FUEL SYSTEM

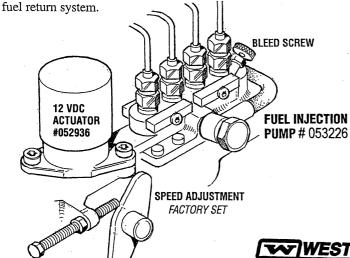

DIESEL FUEL

Use No.2-D (SAE J313) diesel fuel with a Cetane rating of #45 or higher. A lower Cetane rating will result in combustion deposits with the exhaust and poor engine performance. Use an additive such as "Diesel Kleen + Cetane Boost to help restore lubricity with low sulfur diesel.

FUEL WATER SEPARATOR

A primary fuel filter of the water separating type must be installed between the fuel tank and the engine to remove water and other contaminants from the fuel before they can be carried to the fuel system on the engine.

A typical fuel filter/water separator is illustrated in this diagram. This is the Raycor Model 500 MA. Keep in mind that if a water separator type filter is not installed between the fuel supply tank and engine-mounted fuel system, any water in the fuel will affect the fuel pump, engine filter, and injection equipment. The owner/operator is responsible for making certain the fuel reaching the engine's injection equipment is free of impurities. This process is accomplished by installing and maintaining a proper filtration/separation system.


10 micron filter element recommended.

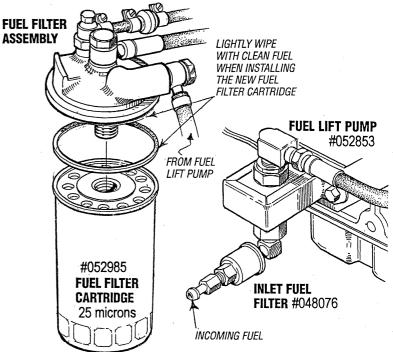
FUEL INJECTION PUMP

The fuel injection pump is the most important component of the diesel engine, requiring the utmost caution in handling. The fuel injection pump has been thoroughly bench-tested and the owner-operator is cautioned not to attempt to service it. If it requires servicing, remove it and take it to an authorized fuel injection pump service facility. Do not attempt to disassemble and repair it. Do not send the timing shims with the injection pump, leave on engine.

BLEED SCREW

The bleed screw on the injection pump should be left in the open position. This will then allow for ease in priming the engine's fuel system and during engine operation allow for air in the system to be delivered to the fuel tank through the

ENGINE FUEL FILTER


Periodically check the fuel connections and the filter bowl for leakage. Change the filter element after the first 50 hours. See the *MAINTENANCE SCHEDULE*.

Changing the Filter Cartridge

1. Shut off the fuel supply.

NOTE: Slide a plastic bag up over the fuel filter cartridge as it will be full of fuel.

- 2. Unscrew the cartridge from its housing and remove the cartridge and its gasket.
- 3. Wipe both the housing and the top of the new cartridge with clean fuel.
- 4. To help reduce fuel system priming, fill the fuel filter with diesel before installing. This will dramatically reduce the priming time needed to purge air from the engines fuel system before starting.
- 5. Install the new cartridge and spin on real tight by hand.
- 6. Open the fuel supply. Run the engine to inspect for leaks.

FUEL LIFT PUMP

Periodically check the fuel connections to and out of the pump and make sure that no leakage is present and that the fittings are tight and secure. The DC ground connection at one of the pumps mounting bolts should be clean and well secured by the mounting bolts to ensure proper pump operations.

INLET FUEL FILTER

To ensure clean fuel into the fuel lift pump, there is a small in-line fuel filter connected to the fuel lift pump elbow. This filter should be replaced every 250 hours of operation.

COOLING SYSTEM

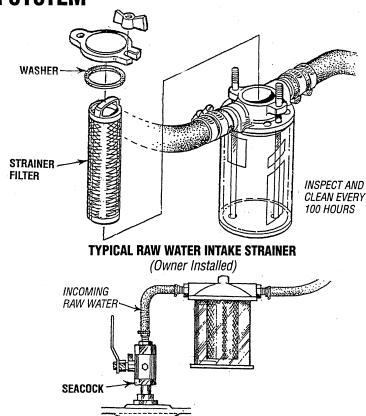
DESCRIPTION

Westerbeke marine diesel engines are designed and equipped for fresh water cooling. Heat produced in the engine by combustion and friction is transferred to fresh water coolant which circulates throughout the engine. This circulating fresh water coolant cools the engine block, its internal moving parts, and the engine oil. The heat is transferred externally from the fresh water coolant to raw water by means of a heat exchanger, similar in function to an automotive radiator. Raw water flows through the tubes of the heat exchanger while fresh water coolant flows around the tubes; engine heat transferred to the fresh water coolant is conducted through the tube walls to the raw water which is then pumped into the exhaust system where finally it is discharged overboard. In other words, the engine is cooled by fresh water coolant, this coolant is cooled by raw water, and the raw water carries the transferred heat overboard through the exhaust system. The fresh water coolant and raw water circuits are independent of each other. Using only fresh water coolant within the engine allows the cooling water passages to stay clean and free from harmful deposits.

RAW WATER INTAKE STRAINER

A major part of the raw water cooling system is a proper boatyard/builder installed intake strainer.

NOTE: Always install the strainer at or below the waterline so the strainer will always be self-priming.


A clean raw water intake strainer is a vital component of the engine's cooling system. Include a visual inspection of this strainer when making your periodic engine check. The water in the glass should be clear.

Perform the following maintenance after every 100 hours of operation:

- 1. Close the raw water seacock.
- 2. Remove and clean the strainer filter.
- 3. Clean the glass.
- 4. Replace the washer if necessary.
- 5. Reassemble and install the strainer.
- 6. Open the seacock.
- 7. Run the engine and check for leaks.

NOTE: Also follow the above procedure after having run hard aground.

If the engine temperature gauge ever shows a higher than normal reading, the cause may be that silt, leaves or grass may have been caught up in the strainer, slowing the flow of raw water through the cooling system.

DRAINING THE RAW WATER SYSTEM

When freezing temperatures are expected, it is best to protect the raw water cooling circuit and engine exhaust from damage.

This procedure is best accomplished by disconnecting the water intake hose from the vessels thru-hull fitting. **Close the intake valve before disconnecting the hose.** Insert the hose end into a large container of fresh water.

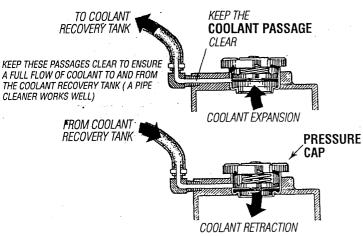
Once the raw water system has been flushed, replace the buckets content with a 50/50 antifreeze mixture. Run the engine and allow this mixture to be pumped through the raw water circuit. Once this antifreeze mixture is visible being discharged from the exhaust opening, shut the engine down. This antifreeze mixture should protect the raw water cooling system and exhaust from freezing.

Re-attach the water intake valve and remember to open the intake valve before starting the engine.

Run the unit for 10 minutes or longer to adequately flush the raw water system.

Provide an external fresh water supply for the bucket to maintain the water level in the bucket while the unit is being operated during the flushing process.

When recommissioning, make certain the valves and seacocks are open so the engine will quickly receive fresh water. If the engine is stowed where it is warm, the fresh water can stay in the engine.


COOLING SYSTEM

FRESH WATER COOLING CIRCUIT

NOTE: Refer to the ENGINE COOLANT section for the recommended antifreeze and water mixture to be used as the fresh water coolant.

Fresh water coolant is pumped through the engine by a circulating pump, absorbing heat from the engine. The coolant then passes through the thermostat into the manifold, to the heat exchanger where it is cooled, and returned to the engine block via the suction side of the circulating pump.

When the engine is started cold, external coolant flow is prevented by the closed thermostat (although some coolant flow is bypassed around the thermostat to prevent the exhaust manifold from overheating). As the engine warms up, the thermostat gradually opens, allowing full flow of the engine's coolant to flow unrestricted to the external portion of the cooling system.

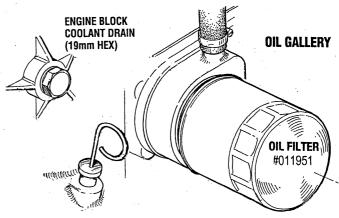
NOTE: Periodically check the condition of the manifold pressure cap. Ensure the upper and lower rubber seals are in good condition. Check to ensure the vacuum valve opens and closes tightly. Carry a spare cap. Check also to ensure the coolant passage is clear so coolant within the, system is able to expand and contract

Coolant Recovery Tank

to and from the coolant recovery tank,

A coolant recovery tank allows for engine coolant expansion and contraction during engine operation, without any significant loss of coolant and without introducing air into the cooling system. This tank should be located at or above the engine manifold level and should be easily accessible.

NOTE: This tank, with its short run of plastic hose, is best located at or above the level of the engine's manifold.


CHANGING COOLANT

The engine's coolant must be changed according to the *MAINTENANCE SCHEDULE*. If the coolant is allowed to become contaminated, it can lead to overheating problems.

A CAUTION: Proper cooling system maintenance is critical; a substantial number of engine failures can be traced back to cooling system corrosion.

Drain the engine coolant by loosening the drain plug on the engine block and opening the manifold pressure cap. Flush the system with fresh water, then start the refill process.

NOTE: The drain on the heat exchanger should also be used to help drain engine coolant.

Refilling the Coolant

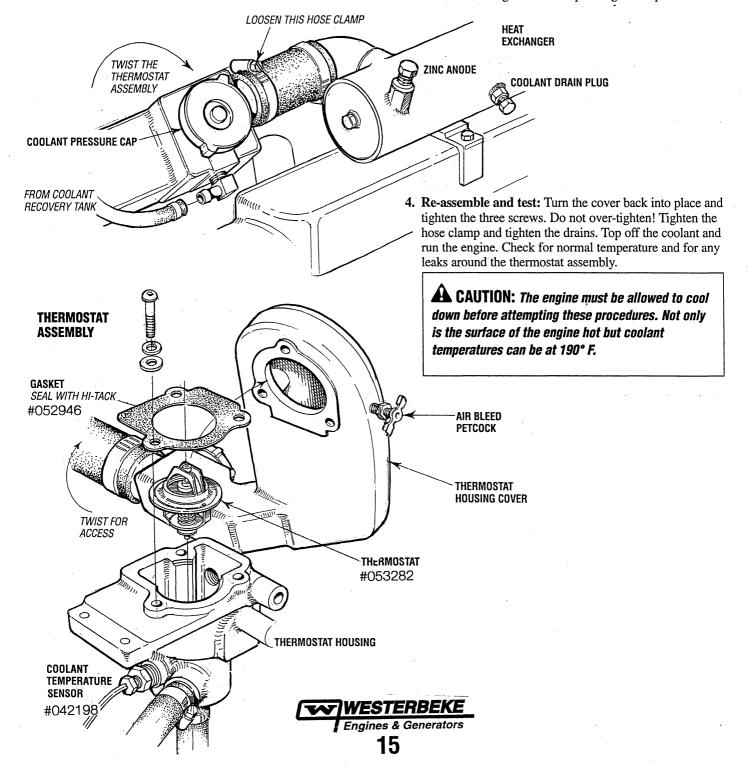
After closing the engine block drain, pour clean, premixed coolant into the manifold and when the coolant is visible in the manifold, start the engine and run it at slow idle. Open the air bleed petcocks on the manifold and the thermostat housing.

Monitor the coolant in the manifold and add as needed. Fill the manifold to the filler neck and when the coolant flowing from the petcock is free of air bubbles, close the petcock and install the pressure cap.

Remove the cap on the coolant recovery tank and fill with coolant mix to halfway between LOW and MAX and replace the cap. Run the engine and observe the coolant expansion flow into the recovery tank. When the petcock on the thermostat housing is free of air bubbles, close that petcock.

After checking for leaks, stop the engine and allow it to cool. Coolant should draw back into the cooling system as the engine cools down. Add coolant to the recovery tank if needed. Clean up any spilled coolant.

A WARNING: Beware of the hot engine coolant. Wear protective gloves.


COOLING SYSTEM

THERMOSTAT

A thermostat, located near the manifold at the front of the engine, controls the coolant temperature as the coolant continuously flows through the closed cooling circuit. When the engine is first started, the closed thermostat prevents coolant from flowing (some coolant is by-passed through a hole in the thermostat to prevent the exhaust manifold from overheating). As the engine warms up, the thermostat gradually opens. The thermostat is accessible and can be checked, cleaned, or replaced easily. Carry a spare thermostat and gasket.

REPLACING THE THERMOSTAT

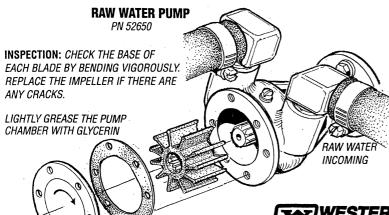
- 1. Drain off some coolant: Release the coolant pressure cap and drain the coolant to the approximate level off the thermostat housing. This can be done using the heat exchanger drain plug.
- 2. Rotate the thermostat assembly: Loosen the hose clamp as shown and remove the three allen screws that hold down the thermostat housing cover, the assembly can now be twisted enough to access the gasket and thermostat.
- 3. Remove/replace the gasket and thermostat: When installing the new parts, apply a thin coat of sealant on both side of the gasket before pressing it into place.

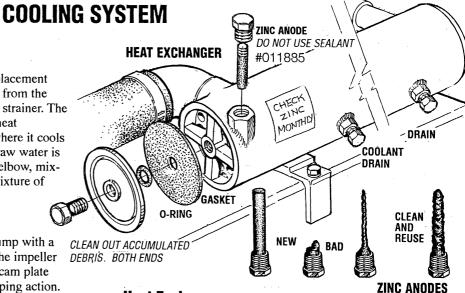
RAW WATER COOLING CIRCUIT

The raw water flow is created by a positive displacement impeller pump. This pump draws water directly from the ocean, lake, or river through a hose to the water strainer. The raw water passes from the strainer through the heat exchanger (through the heat exchanger tubes) where it cools the engine circulating fresh water coolant. The raw water is then discharged into the water injected exhaust elbow, mixing with and cooling the exhaust gasses. This mixture of exhaust gas and raw water is pushed overboard.

Raw Water Pump

The raw water pump is a self-priming, rotary pump with a non-ferrous housing and a neoprene impeller. The impeller has flexible vanes which wipe against a curved cam plate within the impeller housing, producing the pumping action. On no account should this pump be run dry as water acts as a lubricant for the impeller. There should always be a spare impeller and impeller cover gasket aboard (an impeller kit). Raw water pump impeller failures occur when lubricant (raw water) is not present during engine operation. Such failures are not warrantable, and operators are cautioned to make sure raw water flow is present at start-up.


NOTE: Should a failure occur with the pumps internal parts (seals and bearings), it may be more cost efficient to purchase a new pump and rebuild the original pump as a spare.


Inspecting/Changing the Raw Water Pump Impeller

Close the raw water intake valve. Remove the pump cover and, with the proper size impeller tool, carefully pry the impeller out of the pump (the impeller can be pried out using a pair of screwdrivers if an impeller puller is unavailable. Take care not to tear the impeller). Install the new impeller and gasket. Move the blades to conform to the curved cam plate and push the impeller into the pumps housing. When assembling, apply a thin coating of lubricant to the impeller and gasket. **Open the raw water intake valve**.

Run the engine and check for leaks around the pump. Also check for water discharge at the stern tube. Absence of water flow indicates the pump has not primed itself properly.

NOTE: Never allow the pump to run dry. Even a short period of dry running may destroy the impeller.

Heat Exchanger PN. 052493

The heat exchanger is a copper tube which encloses a number of small copper tubes. Raw water is pumped through the small copper tubes and the freshwater coolant from the engine is circulated around the copper tubes. The raw water removes heat from the freshwater coolant.

Zinc Anode

A zinc anode, or pencil, is located in the raw water cooling circuit within the heat exchanger. The purpose of the zinc anode is to sacrifice itself to electrolysis action taking place in the raw water cooling circuit, thereby reducing the effects of electrolysis on other components of the system. The condition of the zinc anode should be checked monthly and the anode cleaned or replaced as required. Spare anodes should be carried on board.

NOTE: Electrolysis action is the result of each particular installation and vessel location; not that of the generator.

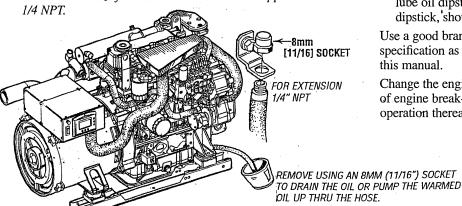
If the zinc pencil needs replacement, hold the hex boss into which the zinc pencil is threaded with a wrench while loosening the anode with another wrench. This prevents the hex boss from possibly tearing off the exchanger shell. After removing the zinc, note the condition of it. If the zinc is in poor condition, there are probably a lot of zinc flakes within the exchanger. Remove the end of the heat exchanger and clean the inside of all zinc debris. Always have a spare heat exchanger end gasket in case the present one becomes damaged when removing the end cover. Replace the gasket (refer to your engine model's heat exchanger end gasket part number), o-ring, cover, and install a new zinc pencil.

Heat Exchanger Service

After approximately 1000 hours of operation, remove, clean and pressure test the engine's heat exchanger. (A local automotive radiator shop should be able to clean and test the heat exchanger.)

NOTE: Operating in silty and/or tropical waters may require that a heat exchanger cleaning be performed more often than every 1000 hours.

WESTERBEKE
Engines & Generators


16

ENGINE LUBRICATING OIL

ENGINE OIL CHANGE

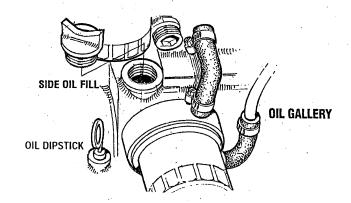
1. *Draining the Oil Sump*. Discharge the used oil through the sump drain hose (attached to the front of the engine) while the engine is still warm. Drain the used oil completely, replace the hose in its bracket, and replace the end cap securely.

NOTE: Thread size for the lube oil drain hose capped end is

2. Replacement of the Oil Filter. When removing the used oil filter, you may find it helpful and cleaner to punch a hole in the upper and lower portion of the old filter to drain the oil from it into a container before removing it. This helps to lessen spillage. A small style automotive filter wrench should be helpful in removing the old oil filter.

NOTE: Do not punch this hole without first loosening the filter to make certain it can be removed!

When installing the new oil filter element, wipe the filter gasket's sealing surface on the engine block free of oil and apply a thin coat of clean engine oil to the rubber gasket on the new oil filter. Screw the filter onto the threaded oil filter nipple, and then tighten the filter firmly by hand.



3. Filling the Oil Sump. Add new oil through the oil filler cap on the top of the engine or through the side oil fill. After refilling, run the generator for a few moments while checking the oil pressure. Make sure there is no leakage around the new oil filter or from the oil drain system, and stop the engine. Then check the quantity of oil with the lube oil dipstick. Fill to, but not over the high mark on the dipstick, should the engine require additional oil.

Use a good brand of engine oil having an API and SAE specification as stated in the SPECIFICATIONS section of this manual.

Change the engine oil and oil filter after the initial 50 hours of engine break-in operation and then every 250 hours of operation thereafter.

OIL FILL

WARNING: Used engine oil contains harmful contaminants. Avoid prolonged skin contact. Clean skin and nails thoroughly using soap and water. Launder or discard clothing or rags containing used oil. Recycle used oil properly.

NOTE: Use genuine WESTERBEKE oil filters. Generic filters are not recommended.

DIGITAL CONTROL BOX

CURRENT MODELS

DESCRIPTION

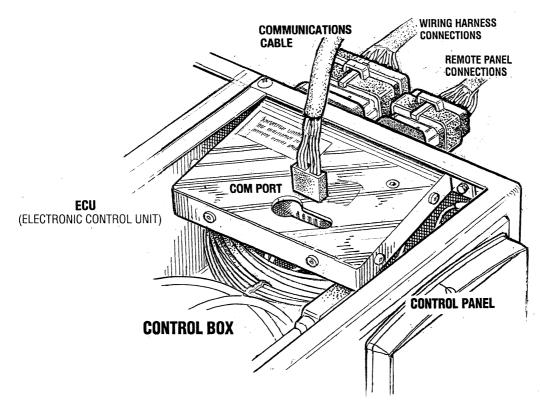
The ECU (Electronic Control Unit) is factory programmed and requires no adjustment. No adjustments in the field can be made to the programming other than engine speed for 50 or 60 hertz operation. The ECU controls starting, engine operation, safety shutdown features and stopping the engine.

The 10 pin communications port is used by the factory to input the operating program into the ECU. This connection can be used with available software Diagnostic Software Kit (#055410) to monitor the operation of the Low CO system and also with the same software to change engine speed for 50 or 60 hertz operation.

The ECU is normally programmed for 60 hertz operation unless specified otherwise. If it is necessary to change the hertz setting of the ECU, the available software has to be used to change this program setting in the ECU. It can not be done any other way.

Generator Frequency Adjustment (Hertz) and AC Voltage Configuration

Prior to proceeding with the instructions below, reconfigure the AC voltage output of the generator to correspond to the Hertz change being made. The AC circuit breaker on the generator (single phase only) may need to be changed to correspond to the new voltage/amperage rating this change will produce.


- 1. Turn the DC breaker on the control panel to the **OFF** position and the AC breaker on the generator to the **OFF** position
- 2. Open the cover on the control panel to gain access to the ECU (Electronic Control Unit) inside.
- **3.** Plug in your laptop containing the Diagnostic Software found in kit #055410. Turn **ON** your laptop.

NOTE: The arrow on the communications cable connecting plug for the ECU must face the harness connections for the ECU.

4. Using the EC20 software, change the hertz selection to ECU and change the configuration of the AC voltage corresponding to the hertz change so both the new operating hertz and the new AC output voltage will display correctly on the LCD Display screen.

NOTE: The PC Interface can be left connected to confirm proper rpm during testing. Always stop the generator and turn OFF the DC breaker before disconnecting the communications cable from the ECU.

- 5. Turn OFF your laptop and unplug it from the ECU.
- **6.** Turn **ON** the control panel's DC breaker.
- 7. Start the generator and monitor the LCD Display screen that the new hertz setting is being displayed and the reconfigured AC voltage output is being properly displayed. If a slight AC output voltage adjustment is needed, use the voltage adjustment potentiometer on the voltage regulator board located inside the control panel.
- 8. Turn ON the AC breaker and load test the generator.

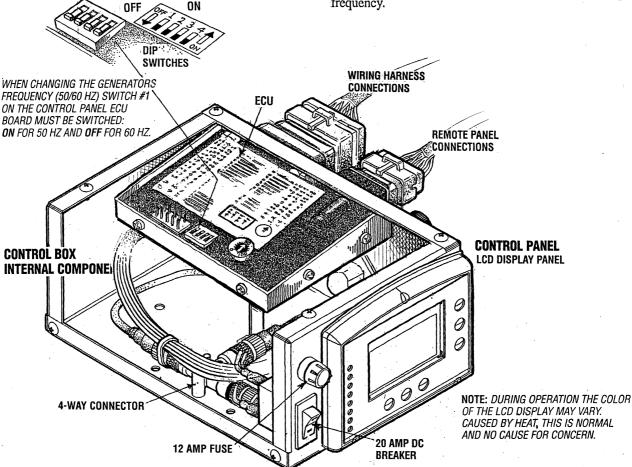
DIGITAL CONTROL BOX

EARLIER MODELS

FREQUENCY FAULT

Frequency is displayed on the LCD display screen while the engine is running in RPM and frequency (hertz).

The ECU is receiving a low AC voltage signal and hertz signal from the MPU which is positioned on the bellhousing over the flywheel ring gear teeth. The ECU interprets this signal as both RPM and hertz.


Should this signal vary approximately 2% either up or down, a frequency fault shut down will occur, initiated by the ECU. The red failure LED on the display panel will illuminate, the frequency LED will turn from green to amber and the LCD display screen will show the fault text "overspeed"

NOTE: If the unit shuts down for an underspeed condition, the same fault "overspeed" will show on the screen but the frequency LED will BLINK.

GENERATOR FREQUENCY ADJUSTMENT (HERTZ)

CAUTION: When changing the generator frequency setting on the ECU, turn off the 20 amp DC circuit breaker on the control box. Turn it back on after the setting has been changed

- Turn the DC breaker on the control panel to the OFF position.
- 2. Open the cover of the control box and view the ECU (Electronic Control Unit).
- 3. Locate the #1 dipswitch on the ECU and move it to the position that corresponds to the Hertz operation desired). See the illustration below showing the ECU in the control box.
- 4. Replace the control box cover, turn the DC breaker ON and start the unit. Monitor the frequency that the engine/generator is operating is operating at the correct frequency.

CAUTION (WESTERLINK or NMEA-2000): The electronic components in the Digital Diesels draw a very small amount of amperage (milli-amps) from the generator's starting battery when the unit is in a static state. This maybe as much as 50 milli-amps for the system ECU and 50 milli-amps for each display. This can be as much as 72 amp-hours in a months time with no generator use. It is not necessary to be concerned with this slight amperage draw during normal seasonal use. However, if the generator set is not to be used for a number of months, such as winter storage, it is best to disconnect the DC power to the generator with a NMEA-2000 system or shut off the DC breaker on the generator's control box for a WESTERLINK system.

NOTE: Keep in mind that the Westerbeke generator maybe the DC power supply for the vessel's NMEA-2000 network.

ENGINE TROUBLESHOOTING LCD DISPLAY FAULTS

PROBLEM	PROBABLE CAUSE	VERIFICATION/REMEDY
LCD DISPLAY DOES	1. Check battery.	1. Battery on.
NOT ILLUMINATE	2. 20 amp breaker off.	2. Turn breaker on.
	3. Loose display connection.	3. Check all cable connections.
	4. 1 amp fuse blown (faulty).	4. Check/replace. Determine cause
LOW OIL PRESSURE	1. Oil level low/oil leak.	1. Check oil level, add oil and repair leaks.
	2. Lack of oil pressure	2. Test oil pressure. If OK, test oil pressure sendor, inspect oil filter, inspect oil pump.
	3. Ground connection.	3. Check ground connection.
	4. Faulty control module (ECU).	4. Inspect all the plug connections/replace.
	5. Faulty oil pressure sensor.	5. Check sensor/replace.
HIGH COOLANT TEMPERATURE	Check system coolant level.	1. Add coolant. Check for leaks.
	2. Sea water pump.	2. Inspect impeller/pump/replace.
	3. Check water pump drive belt.	3. Adjust belt tension, replace belt.
	4. Faulty temperature sensor.	4. Check sensor/replace.
	5. Ground connection.	5. Check ground circuit.
	6. Faulty control module (ECU).	6. Check plug connections/replace.
HIGH EXHAUST TEMPERATURE	1. Check sea water flow.	Inspect thru hull fitting, hose and strainer. Correct as needed.
	2. Faulty exhaust temperature switch.	2. Test/replace.
	3. Ground Connection.	3. Check ground circuit.
	4. Faulty control module (ECU).	4. Check plug connections.
	5. Sea water pump.	5. Inspect impeller/replace.
	6. Faulty fire suppression system.	6. By-pass system/check.
BATTERY VOLTAGE	Tudity in a suppression system. 1. Check alternator drive belt.	Adjust tension/replace if worn.
Difficult Volume	2. Check charge voltage.	2. Check excitation. Replace/repair alternator
	3. Check battery connections.	3. Check + and - cables from battery to engine.
	4. Faulty control module (ECU).	4. Check plug connections/replace.
GENERATOR FREQUENCY	1. Check engine speed.	Check speed setting.
Overspeed (steady LED)	2. Check fuel supply.	2. Inspect filters/replace filters. Test fuel pump operation.
Underspeed (flashing LED)	3. Amperage load.	3. Check + and - cables from battery to engine.
Charles (hashing ELB)	4. Crank cycle with no start. (underspeed fault)	4. Check cause for no start.
	5. Generator Shut-down (underspeed fault)	5. Check MPU (voltage cranking) (Check MPU - coil resistance)
LED DISPLAY EDGES TURN PINK	Compartment ambient temperature too high.	Ventilate compartment. Note: Heat will often change the color of an LCD display. This will not effect the operation of the engine.
WAITING FOR ECU	1. ECU and LCD display not compatible.	Check compatibility with Westerlink or NMEA.
	2. Loose cable connection.	2. Check all cable connections.
	3. Panel DC breaker OFF.	3. Turn ON, check DC voltage across breaker.
	4. Blown 12 amp fuse.	4. Check/replace fuse. Check DC voltage across fusehold
	5. Terminating Resistors.	5. Check all yerminating resistors are in place. 120 ohm per resister measured across pin #4 and #5.
	6. Battery Voltage to ECU.	6. Check between pins P2-24 and P2-25. P2 ECU plug unplugged from ECU. If voltage is present, ECI is faulty

ENGINE ADJUSTMENTS

DRIVE BELT ADJUSTMENT

For your safety, WESTERBEKE generator models come equipped with belt guards that cover the belt(s) on the front of the engine. ("Out of Sight-Out of Mind". The belt guard is NOT installed for that purpose). Operators are advised that proper inspection, service and maintenance is required.

The drive belts must be properly tensioned. Excessive drive belt tension can cause rapid wear of the belt and reduce the service life of the fresh water pump's bearing. A slack belt or the presence of oil on the belt can cause belt slipping, resulting in high operating temperatures.

The generator has one drive belt that drives the DC alternator. The tension adjustment procedure for the belt is as follows:

A WARNING: Never attempt to check or adjust the drive belt's tension while the engine is in operation.

- 1. Remove the belt guard.
- **2.** Loosen the alternator adjusting strap bolt and the base mounting bolt.
- With the belt loose, inspect for wear, cracks, and frayed edges.
- **4.** Pivot the alternator on the base mounting bolt to the left or right as required, to loosen or tighten.
- 5. The drive belt is properly adjusted if it can be deflected no less than 3/8 inch (10mm) and no more than 1/2 inch (12mm) as the belt is depressed with the thumb at the midpoint between the two pulleys on the longest span of the belt.
- **6.** Operate the generator for about 5 minutes then shut down and recheck the belt tension.
- **7.** Replace the belt guard.

FUEL INJECTORS

Fuel injectors should be removed for service/rebuild and reinstalled by a competent mechanic. Information regarding fuel injector removal/inspection/rebuild/testing is found in the Service Manual for the models listed in thus manual.

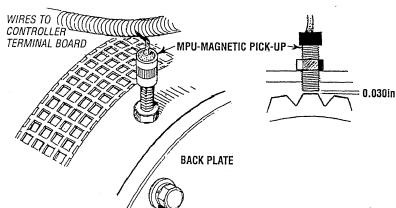
An authorized Fuel Injection shop should be contacted when fuel injection is required. Injector servicing at a Fuel Injection shop is performed in a "clean room" environment generally not found in your standard diesel service shop. Authorized Fuel Injection Repair Shops can be located through your area yellow pages.

NOTE: Clean the area around the base of the injector prior to lifting it out of the cylinder head to help prevent any rust or debris from falling down into the injector hole. If the injector will not lift out easily and is held in by carbon build up or the like, work the injector side to side with the aid of the 17mm deep socket wrench to free it and then lift it out.

ENGINE ADJUSTMENTS

TESTING THE MAGNETIC PICK UP COIL

Test the speed sensor connector for voltage and resistance values.


If the values are correct, remove and inspect the magnetic pick up. With the wires disconnected, unscrew the magnetic pick up from the generator housing and visually inspect the contact end. If any damage is detected, replace the unit.

NOTE: Carefully follow the installation instructions provided with the new magnetic pick up coil.

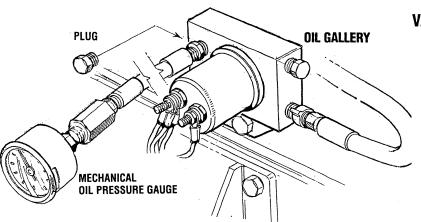
SPEED SENSOR TEST VALUES VOLTAGE (while cranking)
1.5 - 2.5 VAC

RESISTANCE (at rest)

950 - 1000 ohm

MAGNETIC PICK-UP [MPU] INSTALLATION

The MPU is installed in the threaded opening on the side of the flywheel bellhousing. This positions the MPU over the teeth of the flywheel ring gear.


Viewing through this opening, manually rotate the engine crankshaft so as to position the flat of one of the ring gear's teeth directly under the opening. Thread the MPU into the opening until it gently contacts the flat of this tooth (Thread is 3/8" x 24). Back the MPU out of the opening one turn and then lock it in this position with the jam nut. This will position the end of the MPU approximately 0.030 inches away from the flats of the ring gear teeth.

To ensure the MPU is positioned correctly, slowly rotate the crankshaft by 360° by hand to assure there is no physical contact between the MPU and the ring gear teeth. If contact is felt between the MPU and the flywheel teeth, the MPU may be damaged. Remove the MPU and inspect it. Replace if necessary and repeat the above installation procedure.

NOTE: When replacing the Magnetic Pick-Up (MPU) it MUST be replaced without cutting and splicing into the existing wiring cable. Doing so will cause a erratic AC signal to the controller.

ENGINE ADJUSTMENTS

NOTE: WESTERBEKE recommends that the following engine adjustments be performed by a competent engine mechanic. The information below is provided to assist the mechanic.

TESTING OIL PRESSURE

To test the oil pressure, remove the oil pressure sender, then install a mechanical oil pressure gauge in it's place. After warming up the engine, set the engine speed at idle and read the oil pressure gauge.

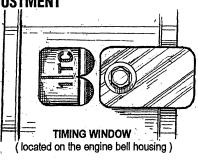
OIL PRESSURE WILL RANGE BETWEEN 50 AND 55PSI AT 1800 RPM

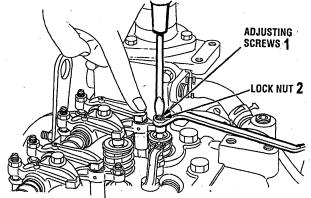
LOW OIL PRESSURE

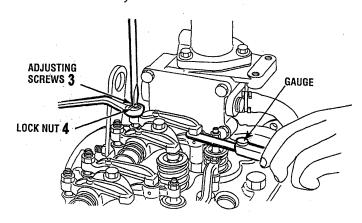
The specific safe minimum oil pressure is 5 - 10 psi. A gradual loss of oil pressure usually indicates worn bearings. For additional information on low oil pressure readings, see the *ENGINE TROUBLESHOOTING* chart.

CHECKING VALVE CLEARANCE

NOTE: Valve clearance must be checked and adjusted when the engine is cold.


- 1. Remove the head cover.
- Align the ITC timing mark on the flywheel (as viewed thru the timing window on the bell housing) so that the #1 piston comes to the top dead center of its compression stroke.
- 3. Loosen the lock nut (2) and loosen the adjusting screw (1).
- 4. Loosen the lock nut and return the adjusting screw.
- Slightly push the rocker arm (intake side) by your fingers and screw in the adjusting screw slowly until you feel the screw touch the top of the valve stem, then tighten the lock nut.
- 6. Loosen the lock nut (4) of adjusting screw (3) (push rod side) and insert the thickness gauge between the rocker arm and the bridge head. Set the adjusting screw to the specific clearance, then tighten the lock nut.
- 7. Adjust the clearance between the rocker arm (exhaust side) and the exhaust valve to the specific clearance.




VALVE CLEARANCE FACTORY SPEC.

0.23 - 0.27MM 0.0091 - 0.0106IN

Location of piston	cylinder Adjustment	Valve arra IN.	ngement EX.
When No.1 piston is compression top dead center	1st	\$	*
	2nd	*	
	3rd		*
	4th		
When No.1 piston is overlap position	1st		
	2nd		*
	3rd	*	,
•	. 4th	☆	*

Tightening torque Cylinder head cover screw Cylinder head cover 5.1 to 8.32 ft-lbs

GLOW PLUGS

DESCRIPTION

The glow plugs are wired through the preheat solenoid. When PREHEAT is pressed at the control panel this solenoid should "click" on and the glow plug should begin to get hot.

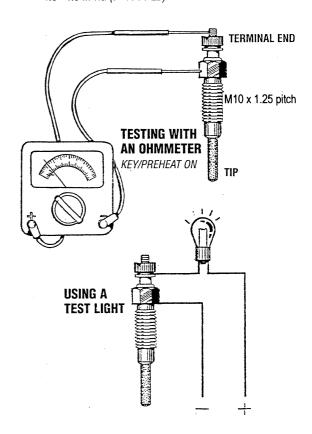
INSPECTION

To inspect the plug, remove the electrical terminal connections, then unscrew or unclamp each plug from the cylinder head. Thoroughly clean each plug's tip and threads with a soft brush and cleaning solution to remove all the carbon and oil deposits. While cleaning, examine the tip for wear and burn erosion; if it has eroded too much, replace the plug.

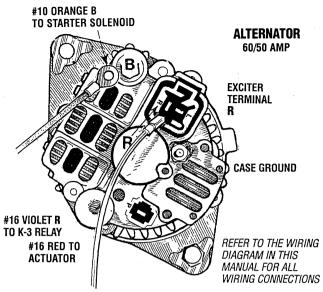
TESTING

An accurate way to test glow plugs is with an ohmmeter. Touch one prod to the glow plug's wire connection, and the other to the body of the glow plug, as shown. A good glow plug will have a 1.0 - 1.5 ohm resistance. This method can be used with the plug in or out of the engine. You can also use an multimeter to test the power drain (8 - 9 amps per plug).

WARNING: These glow plugs will become very hot to the touch. Be careful not to burn your fingers when testing the plugs.


GLOW PLUGS
#053140

REFER TO THE WIRING DIAGRAM IN THIS MANUAL FOR ALL


WIRING CONNECTIONS

Re-install the plugs in the engine and test them again. The plugs should get very hot (at the terminal end) within 7 to 15 seconds. If the plugs don't heat up quickly, check for a short circuit. When reinstalling the glow plugs, use anti-seize compound on the threads.

GLOW PLUG TIGHTENING TORQUE 1.0 - 1.5 M-KG (7 -11 FT-LB)

ALTERNATORS TESTING/TROUBLESHOOTING

DESCRIPTION

The following information applies to the standard alternators that are supplied with WESTERBEKE'S Engines and Generators.

ELECTRICAL CHARGING CIRCUIT

The charging system consists of an alternator with a voltage regulator, an engine DC wiring harness, a mounted DC circuit breaker and a battery with connecting cables. Because of the use of integrated circuits (IC's), the electronic voltage regulator is very compact and is mounted internally or on the back of the alternator.

It is desirable to test the charging system (alternator and voltage regulator) using the wiring harness and electrical loads that are a permanent part of the system and will then provide the technician with an operational test of the charging system as well as the major components of the electrical system.

ALTERNATOR DESCRIPTION

The stator is connected to a three-phase, full-wave bridge rectifier package which contains six diodes. The bridge converts the AC generated in the stator to a DC output for battery charging and accessories,

Power to the regulator and the field of the integral regulator alternator is provided by the field diode (or diode trio) package contained in the alternator.

These alternators produce a rated output of 60 amps. Rated output is achieved at approximately 6000 alternator rpm at an ambient temperature of 75°F (23.8°C). The alternators are designed to operate in an ambient temperature range of -40° to 212°F (-40° to 100°C).

VOLTAGE REGULATOR

The integral voltage regulator is an electronic switching device which senses the system voltage level and switches the voltage applied to the field in order to maintain a proper system voltage.

The regulator design utilizes all-silicon semi conductors and thick-film assembly techniques. After the voltage has been adjusted to the proper regulating valve, the entire circuit is encapsulated to protect the circuit and the components from possible damage due to handling or vibration.

ALTERNATOR TROUBLESHOOTING

Use this troubleshooting section to determine if a problem exists with the charging circuit or with the alternator. If it is determined that the alternator or voltage regulator is faulty, have a qualified technician check it.

WARNING: A working alternator runs hot. A failed alternator can become very hot. Do not touch the alternator until if has cooled.

LOW BATTERY/FAULTY CIRCUIT

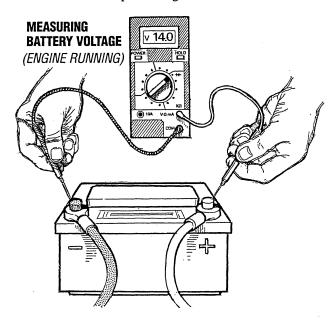
If the starter only moans or makes a clicking sound instead of spinning the engine to life it is likely a low battery or a faulty connection in the starting circuit and not an alternator problem.

PRELIMINARY INSPECTION

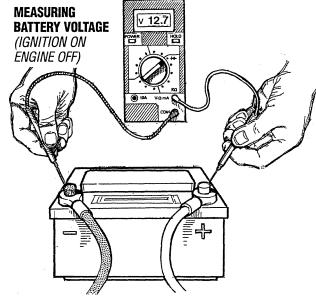
Before starting the actual alternator and voltage regulator, testing the following checks are recommended.

- 1. Make certain your alternator is securely mounted.
- 2. Check the drive belts for proper tension. Replace the belt if it is worn or glazed.
- 3. Check that all terminals, connectors and plugs are clean and tight. Loose or corroded connections cause high resistance and this could cause overcharging, undercharging or damage to the charging system. Badly corroded battery cables could prevent the battery from reaching a fully charged condition.
- **4.** Check the condition of the battery and charge if necessary. A low or discharged battery may cause false or misleading readings in the tests.

NOTE: An isolator with a diode, a solenoid, or a battery selector switch is usually mounted in the circuit to isolate the batteries so the starting battery is not discharged along with the house batteries. If the isolator is charging the starting battery but not the house battery, the alternator is OK and the problem is in the battery charging circuit.

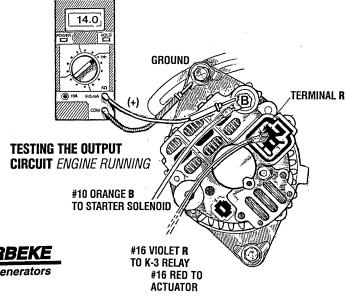

ALTERNATORS TESTING/TROUBLESHOOTING

TESTING THE ALTERNATOR


CAUTION: Before starting the engine make certain that everyone is clear of moving parts! Keep away from sheaves and belts during test procedures.

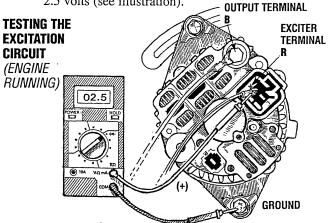
1. Start the Engine.

- 2. After the engine has run for a few minutes, measure the starting battery voltage at the battery terminals using a multimeter set on DC volts.
 - **a.** If the voltage is increasing toward 14 volts, the alternator is working.
 - b. If the voltage remains around 12 volts, a problem exists with either the alternator or the charging circuit; continue with Steps 3 through 6.



- **3. Turn off the engine.** Inspect all wiring and connections. Ensure that the battery terminals and the engine ground connections are tight and clean
- **4.** If a battery selector switch is in the charging circuit, ensure that it is on the correct setting.
- 5. Turn on the ignition switch, but do not start the engine.
- **6.** Check the battery voltage. If your battery is in good condition the reading should be 12 to 13 volts.

TESTING THE OUTPUT CIRCUIT


- 1. Connect the positive probe to the output terminal B and connect the negative probe to ground.
- Wiggle the engine wiring harness while observing the voltmeter. The meter should indicate the approximate battery voltage, and should not vary. If no reading is obtained, or if the reading varies, check the alternator output circuit for loose or dirty connections or damaged wiring.
- 3. Start the engine.
- 4. Repeat the same measurement, the negative probe to ground, the positive probe to **B** with the engine running. The voltage reading should be between 13.5 and 14.5 volts. If your alternator is over or under-charging, have it repaired at a reliable service shop.
- 5. If the previous test reads only battery voltage at terminal **B**, use the meter to measure the DC excitation terminal. If 12 volts is not present at exciter terminal **R**, inspect the wiring for breaks and poor connections. Jump 12 volts from a 12 volt source (such as the battery) and operate the alternator. If the voltage output is 13-14 volts, . . then the alternator is OK.

ALTERNATORS TESTING/TROUBLESHOOTING

TESTING THE EXCITATION CIRCUIT

- Connect the positive (+) multimeter probe to the excitation terminal R on the alternator and the negative (-) lead to ground.
- 2. Turn the ignition switch to the on position and note the multimeter reading. The reading should be 1.3 to 2.5 volts (see illustration).

- 3. If the reading is between .75 and 1.1 volts, the rotor field circuit probably is shorted or grounded.
- 4. If the reading is between 6.0 and 7.0 volts, the rotor field circuit probably is open.
- 5. If no reading is obtained, an open exists in the alternator-excitation lead or in the excitation circuit of the regulator. Disconnect the lead from exc terminal R. Connect the positive multimeter probe to the excitation lead and the negative multimeter probe to ground. If the multimeter now indicates an approximate battery voltage, the voltage regulator is defective and must be replaced. If no voltage is indicated, check the excitation circuit for loose or dirty connections or damaged wiring.

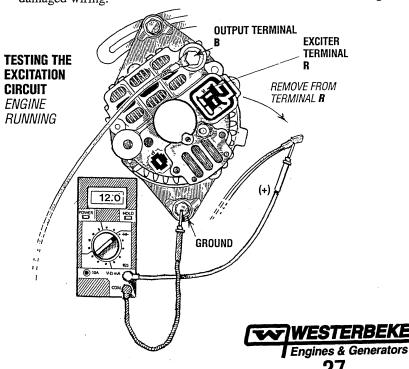
Check the voltage of the service battery, this battery should have a voltage between 13 and 14 volts when the engine is running. If not, there is a problem in the service battery charging circuit. Troubleshoot the service battery charging circuit by checking the wiring and connections, the solenoid, isolator, battery switch, and the battery itself. When the problem has been solved and before the alternator.

CHECKING THE SERVICE BATTERY

When the problem has been solved and before the alternator is back in operation, take the time to tighten and clean the terminal studs. Also clean the connecting terminals from the wiring harness.

ALTERNATOR REPAIR

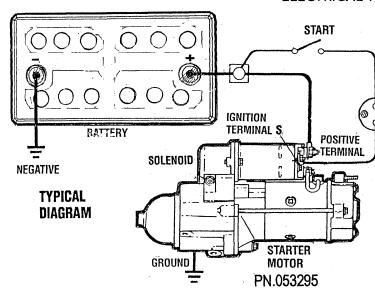
If tests indicate a failed alternator, it will need to be disassembled and repaired. Any good alternator service shop can do the job.


NOTE: WESTERBEKE'S Service Manual has detailed instructions for the disassembly and repair of their standard alternators.

BATTERY CARE

The minimum recommended capacity of the battery used in the engine's 12 volt DC control circuit is 800-1000 Cold Cranking Amps (CCA).

Review the manufacturer's recommendations and then establish a systematic maintenance schedule for your engine's starting batteries and house batteries.


- Monitor your voltmeter for proper charging during engine operation.
- Check the electrolyte level and specific gravity with a hydrometer.
- Use only distilled water to bring electrolytes to a proper level.
- Make certain that battery cable connections are clean and tight to the battery posts (and to your engine).

STARTER MOTOR

ELECTRICAL TESTING

BATTERY SWITCH

TROUBLESHOOTING/INSPECTION

Prior to testing, make certain the ships batteries are at full charge and that the starting system wiring connections (terminals) are clean and tight. Pay particular attention to the ground wire connections on the engine block.

To check the wiring, try cranking the starter for a few cycles, not more than three crank cycles at a time, then run your hand along the wires and terminals looking for warm spots that indicate resistance. Repair or replace any trouble spots.

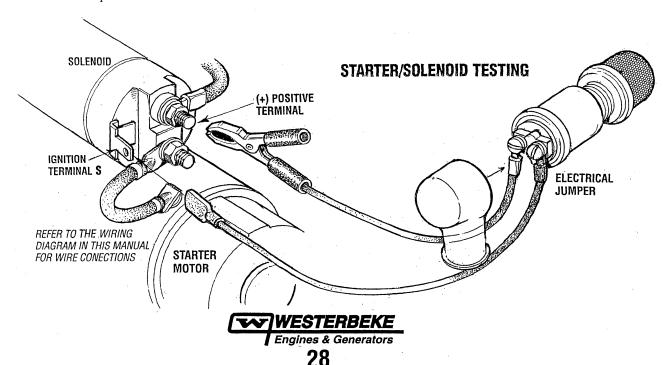
Using a multimeter, test the voltage between the positive terminal stud on the start solenoid and the engine block (ground).

If you read 12 volts, the starter is faulty.

If nothing happens at all, the solenoid is not getting current. Check the battery and inspect the wiring connections. It is also possible that the solenoid is defective.

TESTING WITH AN ELECTRICAL JUMPER
REFER TO THE ILLUSTRATION BELOW

Remove the **Terminal S** wire from the ignition and attach the lead from the electrical jumper. Leave the **+ positive** battery attached and clip the jumper aligater fitting to that terminal. The push button should crank the starter.

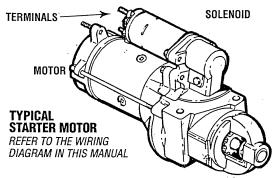

If the push button fails to crank the starter and the batteries wiring and wired connections have been checked, the starter needs to be removed for service.

NOTE: This electrical jumper can be **fabricated** using a standard push button and two connecting wires.

TO REMOVE FOR SERVICE

- 1. Turn off the DC battery switch.
- 2. If necessary, remove any components to gain full access to the starter motor.
- 3. Label and disconnect the wiring from the starter. (Do not allow wires to touch, tape over the terminals).
- 4. Remove the starter mounting bolts.
- 5. Remove the starter from the engine. In some cases the starter will have to be turned to a different angle to clear obstructions,

NOTE: WESTERBEKE uses an ignition proof starter approved by the U.S. Coast Guard. If it is necessary to replace the starter, purchase a new starter from a WESTERBELE dealer/distributor.

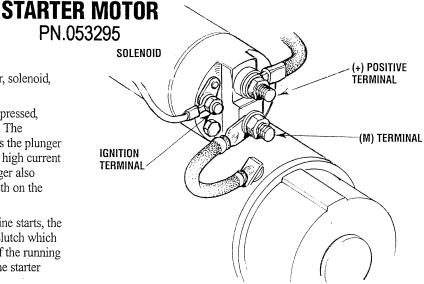

DESCRIPTION

The starting system includes the battery, starter motor, solenoid, and starter button.

When the starter button on the instrument panel is depressed, current flows and energizes the starter's solenoid coil. The energized coil becomes an electromagnet, which pulls the plunger into the coil, and closes a set of contacts which allow high current to reach the starter motor. At the same time, the plunger also serves to push that starter pinion to mesh with the teeth on the flywheel.

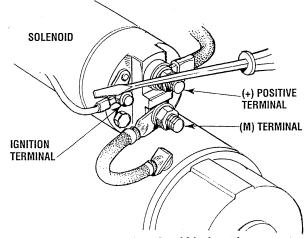
To prevent damage to the starter motor when the engine starts, the pinion gear incorporates an over-running (one-way) clutch which is splined to the starter armature shaft. The rotation of the running engine may speed the rotation of the pinion but not the starter motor itself.

Once the started button is released, the current flow ceases, stopping the activation of the solenoid. The plunger is pulled out of contact with the battery-to-start cables by a coil spring, and the flow of electricity is interrupted to the starter. This weakens the magnetic fields and the starter ceases its rotation. As the solenoid plunger is released, its movement also pulls the starter drive gear from its engagement with the engine flywheel.

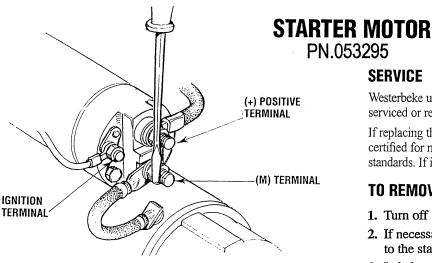

TROUBLESHOOTING TESTING WITH A SCREWDRIVER

Prior to testing, make certain the ships batteries are at full charge and that the starting system wiring connections (terminals) are clean and tight. Pay particular attention to the ground wire connections on the engine block.

To check the wiring, try cranking the starter for a few seconds, never more than 10 seconds at a time, then run your hand along the wires and terminals looking for warm spots that indicate resistance. Repair or replace any trouble spots.


Using a multimeter, test the voltage between the positive terminal stud on the start solenoid and the engine block (ground).

If you read 12 volts, the starter is faulty.


To test the ignition circuit, locate the ignition(s) terminal (it is one of the small terminal studs and is wired to the ignition circuit). Use a screwdriver, don't touch the blade, to jump from that ignition terminal to the positive battery connection terminal on the solenoid.

If the starter cranks, the fault lies with the ignition circuit. If the solenoid clicks but nothing else happens, the starter motor is probably faulty.

If nothing at all happens the solenoid isn't getting current. Check the battery isolation switch and inspect the wiring connections. It is also possible that the solenoid is defective.

WARNING: There will be arching and sparks will fly when jumping terminals. Be certain-the engine space is free of potentially explosive fumes, especially gasoline.

Test again by jumping the two large terminal studs. Hold the screwdriver blade firmly between the studs. Do not allow the screwdriver blade to touch the solenoid or starter casing, this would cause a short.

WARNING: There will be arching as the full starting current should be flowing thru the blade of the screwdriver.

If the starter spins, the solenoid is faulty.

If the starter fails to spin, the motor is probably faulty.

If no arching occurred, there is no voltage reaching the solenoid.

NOTE: Starter motors are either inertia type or pre-engaged. *In the pre-engaged model, the solenoid also moves an arm* that engages the starter motor to the flywheel of the engine. Using a screwdriver to bypass the solenoid on such a starter will run the motor without engaging the flywheel. Turn the battery switch on to provide the power to the solenoid. Hopefully it will create enough magnetic field for the arm to move even though the contacts inside the solenoid are bad.

SERVICE

Westerbeke uses a standard marine starter motor which can be serviced or rebuilt at any starter motor automotive service center.

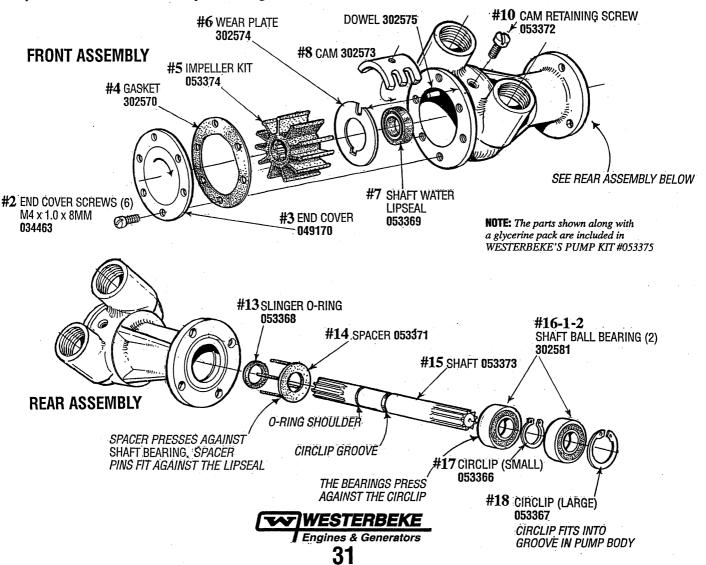
If replacing the starter motor, make certain the new motor is certified for marine use. Automotive starters do not meet USCG standards. If in doubt, contact your WESTERBEKE dealer.

TO REMOVE FOR SERVICE

- 1. Turn off the DC battery switch.
- 2. If necessary, remove any components to gain full access to the starter motor.
- 3. Label and disconnect the wiring from the starter. (Do not allow wires to touch, tape over the terminals).
- 4. Remove the starter mounting bolts.
- 5. Remove the starter from the engine. In some cases the starter will have to be turned to a different angle to clear obstructions.

NOTE: WESTERBEKE uses an ignition proof starter approved by the U.S. Coast Guard. If it is necessary to replace the starter, purchase a new starter from a WESTERBELE dealer/distributor.

RAW WATER PUMP #052650


DISASSEMBLY

- 1. With the pump removed from the engine, remove cover #3, the gasket #4 and withdraw the impeller #5.
- Remove the cam securing screw #10 and remove the cam #8.
- 3. Remove the inner wear plate #6.
- 4. Remove the internal circlip #18.
- 5. Support the pump housing on a press with the impeller opening up.
- 6. Press the shaft assembly #15, #16-1, #17 and #16-2 out of the pump housing through the drive end. Spacer #14 and slinger #13 will come out with the shaft assembly.
- 7. Remove bearing #16-2 from the shaft, external circlip #17 and bearing #16-1.
- 8. Push shaft water seal #7 out of the pump housing through the impeller opening. Note the orientation of the seal for correct installation of the new seal.

ASSEMBLY

1. Assemble bearing #16-2 onto the shaft. Install external circlip #17 and position bearing #16-2 so it just contacts the circlip. Install bearing #16-1 onto the shaft and position it so it contacts the circlip and bearing #16-2.

- 2. Install the spacer #14 and slinger #13 on the shaft. Warm the housing so to provide an easier press fit of the shaft/bearing assembly into the housing. Using an appropriate press, press the shaft bearing assembly into the housing so that the bearing #16-2 just clears the internal circlip #18 retaining slot.
- 3. Install the internal circlip #18.
- 4. Press the shaft bearing assembly so the bearing #16-2 just contacts the internal circlip #18. Rotate the shaft to ensure no binding.
- 5. Apply some glycerine to the sealing lip of the shaft water seal #7 properly orientated. Using a twisting motion, slide the seal over the shaft until it contacts the recess for the seal in the housing. Then carefully press the seal fully into the recess.
- 6. Install the inner wear plate #6 and the cam #8, applying some sealant on the cams securing screw #10.
- 7. Apply some glycerine to the surface of the impeller's housing and install the impeller #5.
- 8. Apply some glycerine to the vanes of the impeller that will contact the cover #3. Install the gasket #4 and cover #3 and secure with the 6 screws #2.
- 9. Re-install the pump on the engine.

SPECIFICATIONS - GENERATORS 25.5/21.0KW, 28.5/23.5KW, 33.0/26.0KW EDEA

ENGINE SPECIFICATIONS

Engine Type Diesel, four-cycle, four-cylinder, fresh

water-cooled, vertical in-line overhead valve mechanism (48 hp at 1800 rpm maximum)

Aspiration Naturally aspirated

Compression Ratio 22.6:1 Governor Electronic Combustion Chamber Swirl type

Bore & Stroke 98 x 120 mm (3.86 x 4.72 iinches)

Piston Displacement

3.62 liters (220.9 cubic inches)

Firing Order 1-3-4-2 Inclination Continuous 20°

Temporary 30° (not to exceed 10 min.)

Weight (dry) 1135 lbs (514.8 kgs)

TUNE-UP SPECIFICATIONS

Compression Pressure (allowable limit)

626 psi (44 kgf/cm²) at 250 rpm 472 psi (30.5 kgf/cm²) at 250 rpm

cylinders

Variation between

10% or less

Injection Timing **Engine Speed**

1800 rpm 60 Hertz

1500 rpm 50 Hertz

9° BTDC

Valve Clearance

0.23 to 0.27 mm

(engine cold) (0.00091 to 0.0106 inches)

Injector Pressure

1991 to 2134 psi (140 to 150 kgf/cm²)

Valve Timing

Intake Opens 14° BTDC Intake Closes 36° ABDC

Exhaust Opens 45° BBDC Exhaust Closes 17° ATDC

ELECTRICAL SYSTEM

Starting Battery 12-Volt DC (-) negative ground

Battery Capacity 800-1000 CCA

DC Charging Alternator Belt Driven-60A or 50A.

Starter 2.5Kw, 12VDC direct drive Starting Aid Glow plugs, sheathed type

DC Cranking Current 150-200 amps (includes glow plugs).

LUBRICATION SYSTEM

General Pressure fed system with external relief valve

Oil Filter Full flow, paper element, spin-on type

Sump Capacity (includes oil filter) 14.0 U.S. qts (13.2 liters)

Operating Oil Pressure

28 - 57 psi (2.0 - 4.0 kg/cm²)

(engine hot)

Oil Grade

API Specification CF, CG-4, CI-4, CJ-4,

SAE 10W-40 or 15W-40.

COOLING SYSTEM

General Fresh water-cooled engine block.

thermostatically-controlled with heat exchanger.

Operating Temperature 160 - 180° F (71 - 82° C)

Fresh Water Pump Centrifugal type, metal impeller, belt-driven

Raw Water Pump Positive displacement, rubber impeller,

gear-driven.

System Capacity

(fresh water)

16 qts (15.1 liters)

Raw Water Flow Rate (at 1800 rpm)

11.0 gpm (41.6 lpm)

FUEL SYSTEM

General Open flow, self bleeding, self priming

(electromagnetic fuel pump)

Fuel No. 2 diesel (cetane rating of 45 or higher)

Fuel Injection Pump Bosch type mini-pump

Fuel Injection Timing 9° BTDC

Injector Nozzle Bosch throttle type

Fuel Filter Spin-on type

Air Intake Metal screen/intake silencer box Air Flow Combustion

115 cfm (3.2 cmm) at 1800 rpm

GENERATOR COOLING

Air Requirements (generator cooling)

0.8 Power factor unit. 500 CFM (15.0 CMM)

Recommendations

NOTE: Increase cooling air flow 15% for slower turning 50hz units.

Generator Compartment Ambient Temperature

122° F (50° C) maximum

NOTE: Forced ventilation should be provided to maintain gererator compartment temperature

below 122° F (50°C).

AC GENERATOR

General - 3 Phase Brushless, four pole revolving field, sealed

lubricated single bearing design. 12 wire reconnectable with solid state voltage regulator.

Single Phase Reconnectable to Double Delta

Voltage - 3 Phase 120 or 120/240 volts 60 Hz

230 volts 50 Hz

Voltage Regulation + or - 2% no load to full rated amperage outlet

Frequency Regulation + or - .3 hz (.5%) no load to full rated amperage

SPECIFICATIONS 33.0/26.0KW EDEA

AC GENE	RATOR (Single Phase)		
Single Phase	Brushless, six-pole, revolving field. Sealed lubricated, single-bearing design. 12 Lead reconnectable (Double Delta for 120/240 volts, 60hz) (Series Star for 230 volts, 50hz) with solid state voltage regulator.		
Voltage	120 or 120/240 Volts - 60 Hertz 230 Volts - 50 Hertz.		
Voltage regulation:	±2% no load to full load.		
Frequency regulation:	.3 Hertz (.5%) no load to full load.		
Rating (Volts AC) 60 Hertz (1800 rpm)	120 Volts 275 Amps 120/240 Volts 275/137.5 Amps		
50 Hertz (1500 rpm)	230 Volts 113 Amps		
Generator Cooling Air Requirements (Single and 3 Phase)	500 cfm (14.1 cmm) NOTE: Increase air supply 15% for 50 Hertz operation (1500 rpm).		
Generator Compartment Ambient Temperature	122°F (50°C) maximum		
Recommendations	NOTE: Forced ventilation should be provided to maintain generator compartment temperatures below 122°F (50°C)		

AC GE	AC GENERATOR (3 Phase)				
Three Phase	Brushless, six-pole, revolving field. Sealed lubricated, single-bearing design. 12 Lead reconnectable Solid state voltage regulator.				
Voltage - 3 phase (60 Hertz)	Low Voltage WYE High Voltage WYE DELTA	240 Volts 480 Volts 277 Volts			
Voltage - 3 Phase (50 Hertz)	High Voltage WYE DELTA	400 Volts 230 Volts			
Amperage - 3 phase (60 Hertz)	Low Voltage WYE High Voltage WYE DELTA	99.3 Amps 49.6 Amps 86.0 Amps			
Amperage - 3 phase (50 Hertz)	High Voltage WYE DELTA	46.9 Amps 81.6 Amps			
Generator Cooling	500 cfm (14.1 cmm)				
Air Requirements (60hz) at 1800 rpm	NOTE: Increase air suppoperation (1500 rpm).	ly 15% for 50 Hertz			
Generator Compartment	122°F (50°C) maximum				
Ambient Temperature Recommendations	NOTE: Forced ventilation should be provided to maintain generator compartment temperatures below 122°F (50°C)				

SPECIFICATIONS 28.5/23.5 KW EDEA

100	- A			
AC GENE	RATOR (Sii	ngle Phase)		
Single Phase	Brushless, six-pole, revolving field. Seal lubricated, single bearing design. 12 lead reconnectable, (Double Delta for 120/240 volts, 60hz.) (Series Star for 230 volts, 50hz) with solid state regulator.			
Voltage	120 or 120/240 volts - 60 hertz 230 Volts - 50 Hertz			
Voltage Regulation	±2% no load t	$\pm 2\%$ no load to full load.		
Frequency Regulation	.3 Hertz (.5%) no load to full load.			
Rating (Volts AC)				
60 Hz (1800 rpm)	120 volts 120/240 volts			
50 Hz (1500 rpm)	230 volts	102.2 amps		
Generator Cooling Air requirements	400 cfm (11.3 c	cmm)		
(Single & 3 phase)	NOTE: Increase air supply 15% for 50 Hertz operation (1500 rpm)			
Generator Compartment Ambient Temperature	NOTE: Forced ventilation should be provided to maintain generator compartment temperatures below 122°F (50°C).			
Recommendations				

AC GENERATOR (3 Phase)			
Three Phase	Brushless, six-pole, revolving field. Sealed lubricated, single-bearing design. 12 Lead reconnectable. Solid state voltage regulator.		
Voltage - 3 phase (60 Hertz)	Low Voltage WYE High Voltage WYE DELTA	240 Volts 480 Volts 277 Volts	
Voltage - 3 Phase (50 Hertz)	High Voltage WYE DELTA	400 Volts 230 Volts	
Amperage - 3 phase (60 Hertz)	Low Voltage WYE High Voltage WYE DELTA	85.8 Amps 49.2 Amps 74.3 Amps	
Amperage - 3 phase (50 Hertz)	High Voltage WYE DELTA	42.4 Amps 73.8 Amps	
Generator Cooling Air requirements	400 cfm (11.3 cmm)		
(Single & 3 phase)	NOTE: Increase air supply 15% for 50 operation (1500 rpm)		
Generator Compartment Ambient Temperature	122°F (50°C) maximum		
Recommendations	NOTE: Forced ventilation to maintain generator cotemperatures below 122	ompartment	

SPECIFICATIONS - GENERATORS 25.5/21.0KW, 28.5/23.5KW, 33.0/26.0KW EDE

ENGINE SPECIFICATIONS

Engine Type Diesel, four-cycle, four-cylinder, fresh

water-cooled, vertical in-line overhead valve mechanism (48 hp at 1800 rpm maximum)

Aspiration Naturally aspirated

Compression Ratio 21.8:1 Governor Electronic

Combustion Chamber Swirl type

Bore & Stroke 98mm x 110mm (3.86 x 4.33 inches)

Piston Displacement 3.31 liters (202.53 cubic inches)

Firing Order 1-3-4-2 Inclination Continuous 20°

Temporary 30° (not to exceed 10 min.)

Weight (dry) 1135 lbs (514.8 kgs)

TUNE-UP SPECIFICATIONS

Compression Pressure (allowable limit)

626 psi (44 kgf/cm²) at 250 rpm 472 psi (30.5 kgf/cm2) at 250 rpm

Variation between

cylinders 10% or less

11.5° - 12.5° BTDC Injection Timing **Engine Speed**

1800 rpm 60 Hertz 1500 rpm 50 Hertz

Valve Clearance 0.23 to 0.27 mm (engine cold) (0.00091 to 0.0106 inches)

Injector Pressure 1991 to 2134 psi (140 to 150 kgf/cm²)

Intake Opens 14° BTDC Valve Timing

Intake Closes 36° ABDC

Exhaust Opens 45° BBDC Exhaust Closes 17° ATDC

ELECTRICAL SYSTEM

Starting Battery 12-Volt DC (-) negative ground

Battery Capacity 800-1000 CCA

DC Charging Alternator Belt Driven-60A or 50A. Starter 2.5Kw, 12VDC direct drive

Starting Aid Glow plugs, sheathed type

150-200 amps (includes glow plugs). DC Cranking Current

LUBRICATION SYSTEM

General Pressure fed system with external relief valve

Oil Filter Full flow, paper element, spin-on type

Sump Capacity 14.0 U.S. qts (13.2 liters) (includes oil filter)

Operating Oil Pressure 28 - 57 psi (2.0 - 4.0 kg/cm²) (engine hot)

API Specification CF, CG-4, CI-4, CJ-4, Oil Grade

SAE 10W-40 or 15W-40.

COOLING SYSTEM

General Fresh water-cooled engine block,

thermostatically-controlled with heat exchanger.

Operating Temperature 160 - 180° F (71 - 82° C)

Fresh Water Pump Centrifugal type, metal impeller, belt-driven

Raw Water Pump Positive displacement, rubber impeller,

gear-driven.

System Capacity (fresh water)

16 qts (15.1 liters)

Raw Water Flow Rate (at 1800 rpm)

11.0 gpm (41.6 lpm)

FUEL SYSTEM

General Open flow, self bleeding, self priming

(electromagnetic fuel pump)

No. 2 diesel (cetane rating of 45 or higher)

Fuel Injection Pump Bosch type mini-pump

11.5° - 12.5° BTDC **Fuel Injection Timing** Injector Nozzle Bosch throttle type

Fuel Filter Spin-on type

Air Intake Metal screen/intake silencer box

Air Flow Combustion 105 cfm (3.0 cmm) at 1800 rpm

GENERATOR COOLING

Air Requirements (generator cooling)

0.8 Power factor unit. 500 CFM (15.0 CMM)

NOTE: Increase cooling air flow 15% for slower turning 50hz units.

Generator Compartment Ambient Temperature

122° F (50° C) maximum

NOTE: Forced ventilation should be provided to maintain gererator compartment temperature

below 122° F (50°C).

AC GENERATOR

General - 3 Phase Brushless, four pole revolving field, sealed

lubricated single bearing design. 12 wire reconnectable with solid state voltage regulator.

Single Phase Reconnectable to Double Delta

Voltage - 3 Phase Reference conection chart and AC voltages

(multiple)

120 or 120/240 volts 60 Hz Voltage - Single Phase

115/230 volts 50 Hz

Voltage Regulation + or - 2% no load to full rated amperage outlet

Frequency Regulation + or - .3 hz (.5%) no load to full rated amperage

outlet

SPECIFICATIONS 25.5/21.0KW EDE

AC GENERATOR (Single Phase)				
Single Phase	Brushless, six-pole, revolving field. Seal lubricated, single bearing design. 12 lead reconnectable, (Double Delta for 120/240 volts, 60hz.) (Series Star for 230 volts, 50hz) with solid state regulator.			
Voltage	120 or 120/240 volts - 60 hertz 230 Volts - 50 Hertz			
Voltage Regulation	$\pm 2\%$ no load to full load.			
Frequency Regulation	.3 Hertz (.5%) no load to full load.			
Rating (Volts AC) 60 Hz (1800 rpm)	120 volts 212.5 amps 120/240 volts 212.5/106.3 amps			
50 Hz (1500 rpm)	230 volts	91.3 amps		
Generator Cooling Air requirements (Single & 3 phase)	400 cfm (11.3 c NOTE: Increase operation (1500	air supply 15% for 50 Hertz		
Generator Compartment	122°F (50°C) maximum			
Ambient Temperature Recommendations	NOTE: Forced ventilation should be provid to maintain generator compartment temperatures below 122°F (50°C).			

AC GENERATOR (3 Phase)				
Three Phase	Brushless, six-pole, revolving field. Sealed lubricated, single-bearing design. 12 Lead reconnectable. Solid state voltage regulator.			
Voltage - 3 phase (60 Hertz)	Low Voltage WYE High Voltage WYE DELTA	240 Volts 480 Volts 277 Volts		
Voltage - 3 Phase (50 Hertz)	High Voltage WYE DELTA	400 Volts 230 Volts		
Amperage - 3 phase (60 Hertz)	Low Voltage WYE High Voltage WYE DELTA	76 Amps 38 Amps 66.5 Amps		
Amperage - 3 phase (50 Hertz)	High Voltage WYE DELTA	37.9 Amps 65.9 Amps		
Generator Cooling Air requirements	450 cfm (12.7 cmm)			
(60hz) at 1800 rpm	NOTE: Increase air supply 1 operation (1500 rpm)	5% for 50 Hertz		
Generator Compartment Ambient Temperature	NOTE: Forced ventilation should be provided to maintain generator compartment temperatures below 122°F (50°C).			
Recommendations				

SPECIFICATIONS 28.5/23.5KW EDE

Ì	AC GENER	RATOR (Sin	igle Phase)	
	Single Phase	Brushless, six-pole, revolving field. Seal lubricated, single bearing design. 12 lead reconnectable, (Double Delta for 120/240 volts, 60hz.) (Series Star for 230 volts, 50hz) with solid state regulator.		
	Voltage	120 or 120/240 volts - 60 hertz 230 Volts - 50 Hertz		
	Voltage Regulation	±2% no load to	o full load.	
	Frequency Regulation	.3 Hertz (.5%) no load to full load.		
	Rating (Volts AC) 60 Hz (1800 rpm)	120 volts 120/240 volts		
	50 Hz (1500 rpm)	230 volts	102.2 amps	
	Generator Cooling Air requirements (Single & 3 phase)	400 cfm (11.3 c NOTE: Increase operation (1500	air supply 15% for 50 Hertz	
	Generator Compartment			
	Ambient Temperature Recommendations	NOTE: Forced ventilation should be provide to maintain generator compartment temperatures below 122°F (50°C).		

AC GENERATOR (3 Phase)				
Three Phase	Brushless, six-pole, revolving field. Sealed lubricated, single-bearing design. 12 Lead reconnectable. Solid state voltage regulator.			
Voltage - 3 phase (60 Hertz)	Low Voltage WYE High Voltage WYE DELTA	240 Volts 480 Volts 277 Volts		
Voltage - 3 Phase (50 Hertz)	High Voltage WYE DELTA	400 Volts 230 Volts		
Amperage - 3 phase (60 Hertz)	Low Voltage WYE High Voltage WYE DELTA	85.8 Amps 42.9 Amps 74.3 Amps		
Amperage - 3 phase (50 Hertz)	High Voltage WYE DELTA	42.4 Amps 73.8 Amps		
Generator Compartment Air requirements	400 cfm (12.7 cmm)			
(60hz) at 1800 rpm	NOTE : Increase air supply operation (1500 rpm)	15% for 50 Hertz		
Generator Compartment Ambient Temperature	122°F (50°C) maximum			
Recommendations	NOTE: Forced ventilation sh to maintain generator com, temperatures below 122°F	partment [*]		

SPECIFICATIONS 33.0/26.0KW EDE

AC GENERATOR (Single Phase)

Single Phase Brushless, six-pole, revolving field.

Sealed lubricated, single-bearing design. 12 Lead reconnectable (Double Delta for 120/240 volts, 60hz) (Series Star for 230 volts, 50hz) with solid state voltage regulator.

Voltage

120 or 120/240 Volts - 60 Hertz

230 Volts - 50 Hertz.

Voltage regulation:

±2% no load to full load.

Frequency regulation:

.3 Hertz (.5%) no load to full load.

Rating (Volts AC)

60 Hertz (1800 rpm)

120 Volts 120/240 Volts 275 Amps

275/137.5 Amps

50 Hertz (1500 rpm)

230 Volts

113 Amps

Generator Cooling Air Requirements (Single and 3 Phase) 450 cfm (12.7 cmm)

NOTE: Increase air supply 15% for 50 Hertz

operation (1500 rpm).

Generator Compartment **Ambient Temperature** Recommendations

122°F (50°C) maximum

NOTE: Forced ventilation should be provided to maintain generator compartment temperatures below 122°F (50°C)

AC GENERATOR (3 Phase)

Three Phase Brushless, six-pole, revolving field. Sealed lubricated, single-bearing design. 12 Lead reconnectable Solid state voltage regulator.

Low Voltage WYE Voltage - 3 phase (60 Hertz)

High Voltage WYE DELTA

240 Volts 480 Volts 277 Volts

Voltage - 3 Phase

(50 Hertz)

High Voltage WYE DELTA

400 Volts 230 Volts

Amperage - 3 phase

(60 Hertz)

Low Voltage WYE High Voltage WYE 99.3 Amps 49.6 Amps

Amperage - 3 phase (50 Hertz)

DĔLTA High Voltage WYE DĔLTA

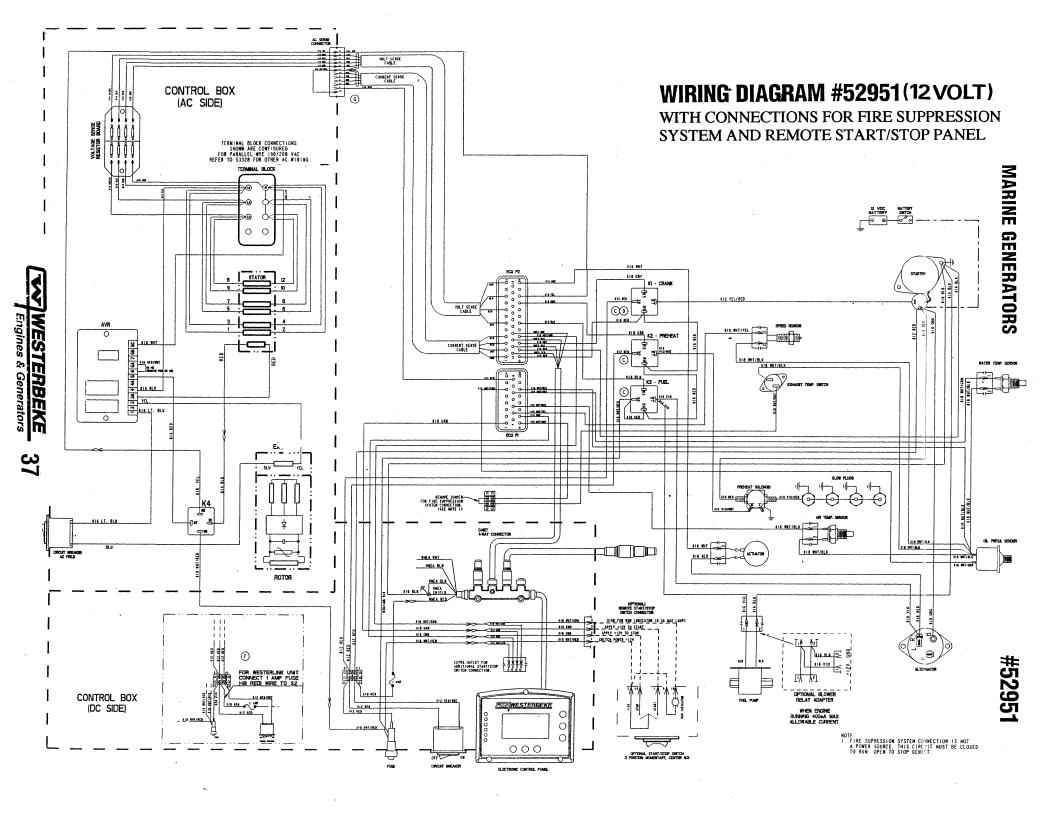
86.0 Amps 46.9 Amps

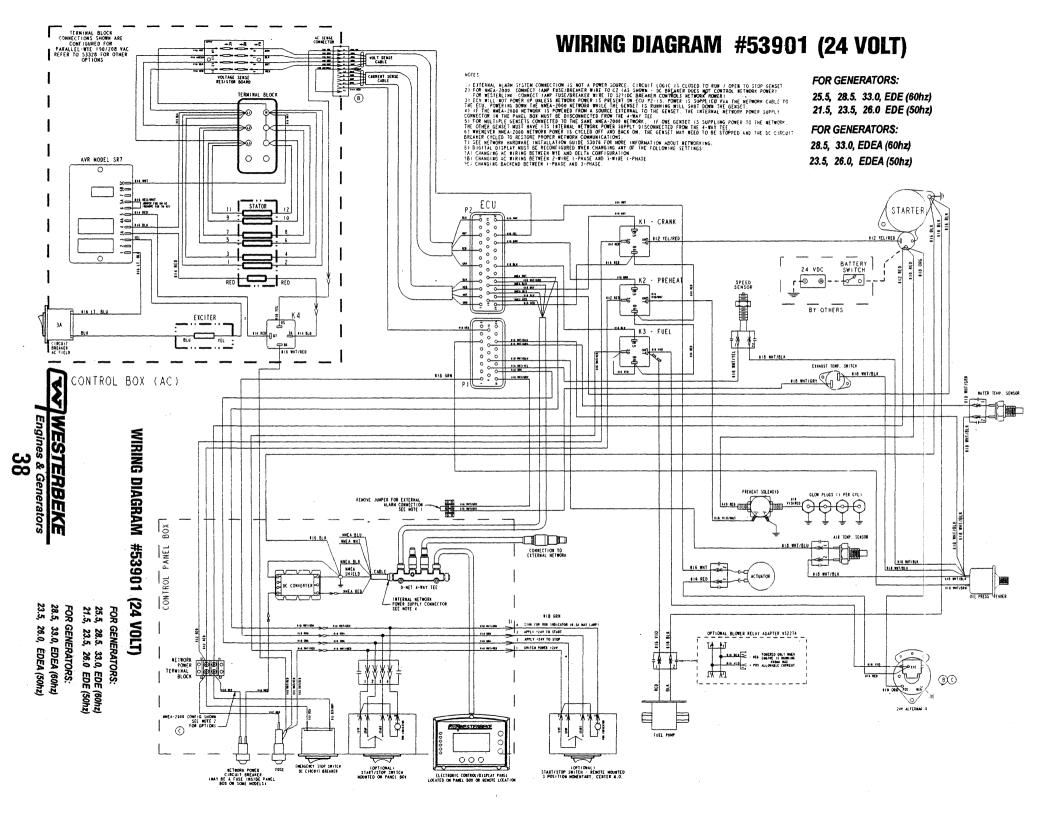
Generator Cooling

500 cfm (14.1 cmm)

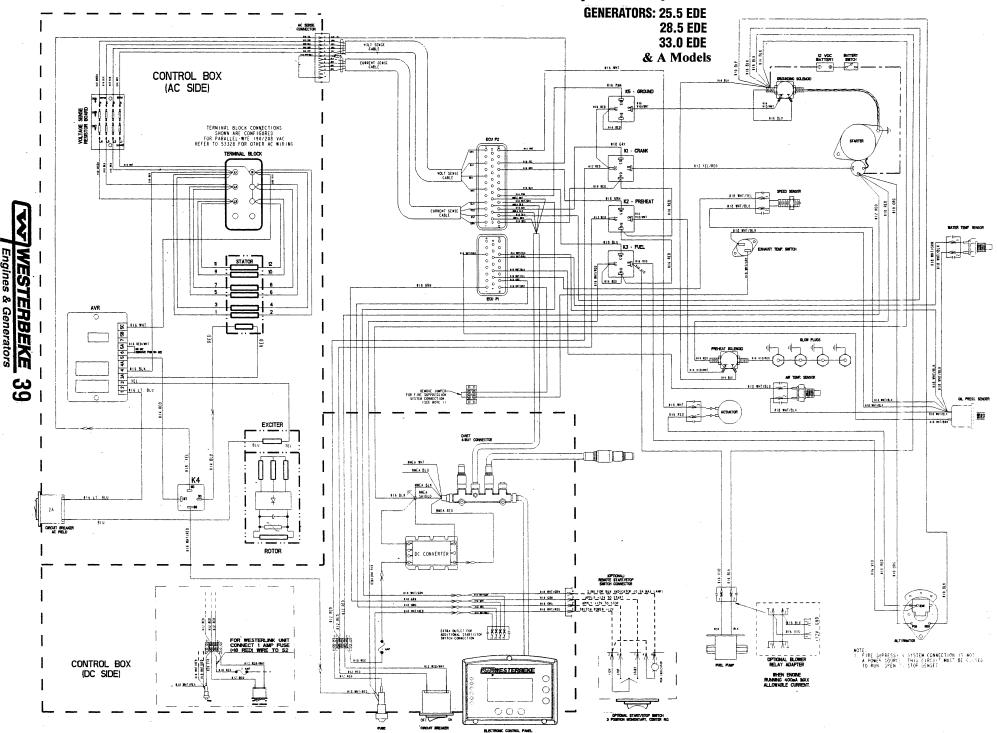
81.6 Amps

Air Requirements (60hz) at 1800 rpm


NOTE: Increase air supply 15% for 50 Hertz


operation (1500 rpm).

Generator Compartment Ambient Temperature Recommendations


122°F (50°C) maximum

NOTE: Forced ventilation should be provided to maintain generator compartment temperatures below 122°F (50°C)

WIRING DIAGRAM #54533 (24 VOLT) UNGROUNDED

GENERATOR INFORMATION

USE OF ELECTRIC MOTORS

The power required to start an electric motor is considerably more than is required to keep it running after it is started. Some motors require much more current to start them than others. Split-phase (AC) motors require more current to start, under similar circumstances, than other types. They are commonly used on easy-starting loads, such as washing machines, or where loads are applied after the motor is started, such as small power tools. Because they require 5 to 7 times as much current to start as to run, their use should be avoided, whenever possible, if the electric motor is to be driven by a small generator. Capacitor and repulsion-induction motors require from 2 to 4 times as much current to start as to run. The current required to start any motor varies with the load connected to it. An electric motor connected to an air compressor, for example, will require more current than a motor to which no load is connected.

In general, the current required to start 115-Volt motors connected to medium starting loads will be approximately as follows:

MOTOR SIZE (HP)	AMPS FOR RUNNING (AMPERES)	AMPS FOR STARTING (AMPERES)
1/6	3.2	6.4 to 22.4*
1/4	4.6	9.2 to 32.2*
1/3	5.2	10.4 to 72.8*
1/2	7.2	14.4 to 29.2*
3/4	10.2	20.4 to 40.8*
1	13	26 to 52

*NOTE: In the above table the maximum Amps for Starting is more for some small motors than for larger ones. The reason for this is that the hardest starting types (split-phase) are not made in larger sizes.

Because the heavy surge of current needed for starting motors is required for only an instant, the generator will not be damaged if it can bring the motor up to speed in a few seconds. If difficulty is experienced in starting motors, turn off all other electrical loads and, if possible, reduce the load on the electric motor.

Required Operating Speed

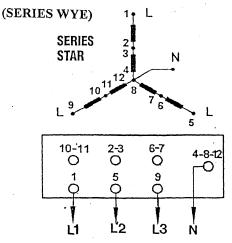
Run the generator first with no load applied, then at half the generator's capacity, and finally loaded to its full capacity as indicted on the generator's data plate. The output voltage should be checked periodically to ensure proper operation of the generating plant and the appliances it supplies. If an AC voltmeter or ampere meter is not installed to monitor voltage and load, check it with a portable meter and amp probe.

NOTE: When the vessel in which the generator is installed contains AC equipment of 120 volts only, it is recommended that the generator's AC terminal block be configured to provide one 120 volt AC hot leg for the vessel's distribution panel. This will ensure good motor starting response from the generator.

Generator Frequency Adjustment

Frequency is a direct result of engine/generator speed, as indicated by the following:

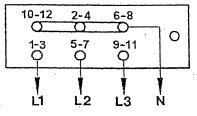
- When the generator is run at 1800 RPM, the AC voltage output frequency is 60 Hertz.
- When the generator is run at 1500 RPM, the AC voltage output frequency is 50 Hertz.

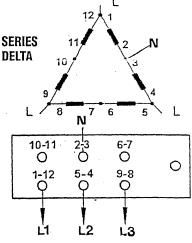

Therefore, to change the generator's frequency, the generator's drive engine's speed must be changed. A reconfiguration of the AC output connections at the generator is also necessary.

Generator Maintenance

- Maintaining reasonable cleanliness is important. Connections of terminal boards and rectifiers may become corroded, and insulation surfaces may start conducting if salts, dust, engine exhaust, carbon, etc. are allowed to build up. Clogged ventilation openings may cause excessive heating and reduced life of windings.
- For unusually severe conditions, thin rust-inhibiting petroleum-base coatings, should be sprayed or brushed over all surfaces to reduce rusting and corrosion. Typical materials suggested are Daubert Chemical Co. "Non-Rust AC-410" and Ashland "Tectyle 506" or equivalent.
- In addition to periodic cleaning, the generator should be inspected for (a) tightness of all connections, (b) evidence of overheated terminals and (c) loose or damaged wires.
- The drive discs on single bearing generators should be checked periodically if possible for tightness of screws and for any evidence of incipient cracking failure. Discs should not be allowed to become rusty because rust may accelerate cracking. The bolts which fasten the drive disc to the generator shaft must be hardened steel SAE grade 8, identified by 6 radial marks, one at each of the 6 corners of the head.
- The rear armature bearing is lubricated and sealed; no maintenance is required. However, if the bearing becomes noisy or rough-sounding, have it replaced.
- Examine bearing at periodic intervals. No side movement of shaft should be detected when force is applied. if side motion is detectable, bearings are wearing or wear on shaft of bearing socket outside bearing has occurred. Repair must be made quickly or major components will rub and cause major damage to generator.

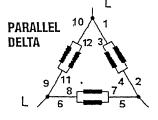
The generator's data plate gives the voltage, current, and frequency rating of the generator. An AC wiring decal is on the inside of the louvered cover at the generator end that includes the AC voltage connections. These voltage diagrams are also shown on these pages.

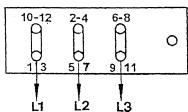

TWELVE LEAD WINDING/TERMINAL BOARD CONNECTIONS


50 Hz L-L 400 volts 50 Hz L-N 230 volts 60 Hz L-L 480 volts 60 Hz L-N 277 volts

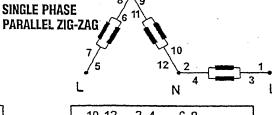
PARALLEL WYE) 1 3 PARALLEL STAR N 12 4 6 7 7

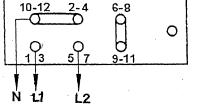
AND (NOMINAL) VOLTAGES

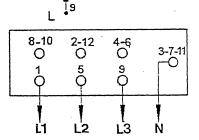

50 Hz L-L 200 volts 50 Hz L-N 115 volts 60 Hz L-L 240 volts 60 Hz L-N 138 volts



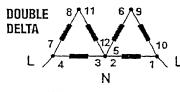
50 Hz L-L 230 volts 50 Hz L-N 115 volts 60 Hz L-L 277 volts 60 Hz L-N 138 volts (Refer to Note #1)

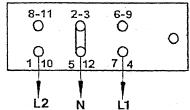

THREE PHASE


ZIG-ZAG

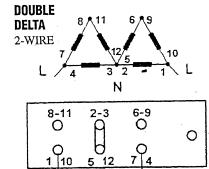


50 Hz L-L 115 volts 60 Hz L-L 138 volts




50 Hz L-L 230 volts 50 Hz L-N 115 volts 60 Hz L-L 277 volts 60 Hz L-N 138 volts (Refer to Note #1)

4 6


50 Hz L-L 346 volts 50 Hz L-N 200 volts 60 Hz L-L 415 volts 60 Hz L-N 240 volts (Refer to Note #2)

50 Hz L-L 230 volts 50 Hz L-N 115 volts 60 Hz L-L 240 volts 60 Hz L-N 120 volts **Note #1** Single phase amperage load. The phase current must not exceed the nominal value.

Note #2 Three phase zig-zag connection. The rated power must be multiplied by 0.866.

50 Hz L-N 230 volts 60 Hz L-N 240 volts

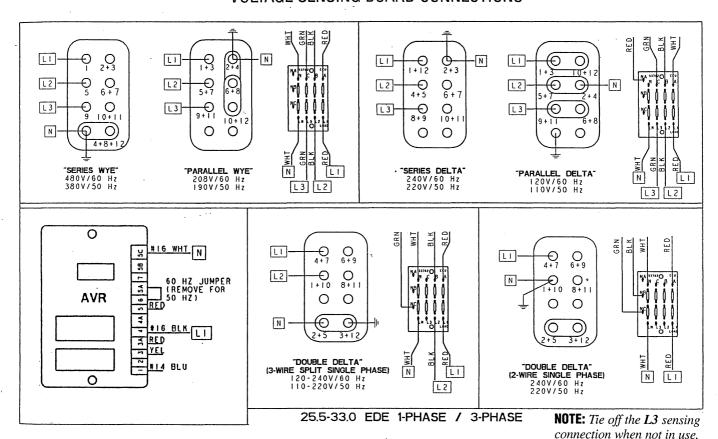
L

VOLTAGE SENSING

A CAUTION: As a precaution against an unintentional start, shut off the 20 Amp DC breaker on the control panel.

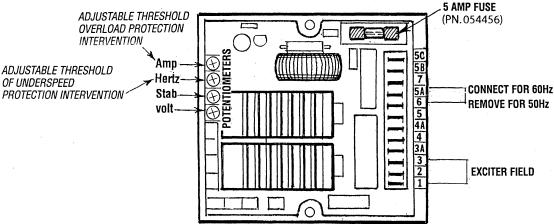
VOLTAGE SENSING BOARD

- 1. When reconfiguring the AC generators output and/or also changing the Hertz produced by the generator, the connections from the Voltage Sensing Board MUST be properly connected to the correct output line terminals and the neutral for the ECU to correctly show these line voltages on the LCD Display Screen.
- 2. The illustrations below show the Voltage Sensing Board and its three (3) line connections L1, L2, and L3 along with the Neutral connection(N).
- 3. There are reconfigurations that may not require all three Line sensing connections. Those that are not needed should be protected and tied off out of harms way.


- **4.** Verify all reconfiguration connections are correct and turn off any AC breakers.
- 5. Start the generator and monitor the AC output voltage at the generator's AC terminal block. Line to line and line to neutral. Adjust the voltage regulator board as needed to fine tune the output voltage. Check the generator hertz/frequency with your hand-held meter. Check the LCD Display Screen reading and that they correspond to the voltage and hertz being produced.

NOTE: There may be some slight variations between your hand-held meter readings and the LCD Display Screen. This is due to the ECU taking an average reading of voltage/hertz that it is displaying on the screen.

6. Turn ON the AC breakers and load test the unit.


AC OUTPUT CONFIGURATIONS

VOLTAGE SENSING BOARD CONNECTIONS

ELECTRONIC REGULATION – AVR

PN. 052944

DESCRIPTION

The voltage regulator (AVR) ensures optimum AC generator performance. This advanced design AVR is equipped with circuitry protection to guard against operating conditions that could be detrimental to the AC generator. The following information details the voltage regulators adjustments and connections. These procedures should be performed by a qualified technician.

TERMINAL CONNECTIONS

- **#1.** Excitation field DC negative.
- #2. Exciter field jumper to 3 if the regulator AC supply between 5 and 3A is less than 160 VAC.
- #3. Exciter field DC positive.
- #3A. Supply voltage to regulator (AC).
- #4. Sensing voltage.
- **#5.** Supply voltage to regulator (AC).
- #6. Jumper to 5A for 60 Hz operation.
- #7. Not used.
- #5B. Not used.
- #5C. Sensing voltage.

POSSIBLE CONNECTIONS

Exciter Field: The exciter field negative should be connected to terminal 1 of the electronic regulator (normally dark blue or black), while the positive (normally red or yellow) should be connected to terminal 3.

Supply: There are two possibilities.

- 1. The supply coincides with the sensing. In this case the SR7/2 supply should be connected to terminals 3 and 5 (in case of three-phase generators, terminal 5 is normally connected with the star point). Terminals 3 and 4 should be connected to each other in such a way that the supply is also sensing. This connection in necessary when the generator does not have auxiliary winding for supplying the regulator.
- The supply and sensing separate. This is the case of a generator equipped with auxiliary winding for regulator supply. Supply is always connected to terminals 3 and 5 of the regulator.

In both of these cases, the SR7/2 supply can vary from 80 to 270 VAC. But it should be noted that terminals 2 and 3 should be bridged for supply with voltage between 80 and 160 VAC, while the same terminals should be left open if the voltage is between 160 and 270 VAC.

Sensing: Sensing should be connected to terminals 4 and 5 and can vary from 80 to 350 VAC. The sensing is single phase only and therefore is normally connected to one alternator phase.

Operation at 60 Hz: When operating at 60 Hz, terminals 5A and 6 should be connected to each other in order to keep the low frequency protection correctly regulated.

WARNING: Be aware that high voltages may be present. Take all necessary precautions to safe guard against electrical hazards.

FUNCTIONS OF THE REGULATOR POTENTIOMETERS

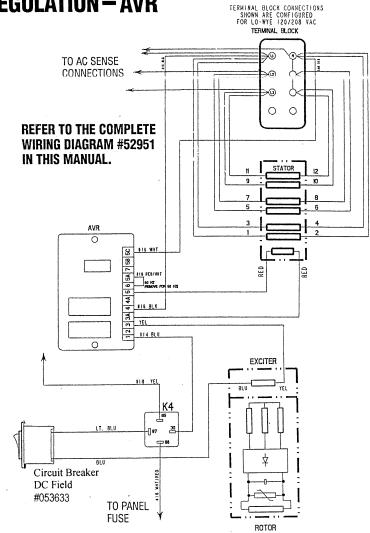
Volt: With this potentiometer, it is possible to adjust the voltage generated by the alternator in a very simple way. If the screw is turned clockwise, the voltage increases, if the screw is turned counterclockwise it decreases.

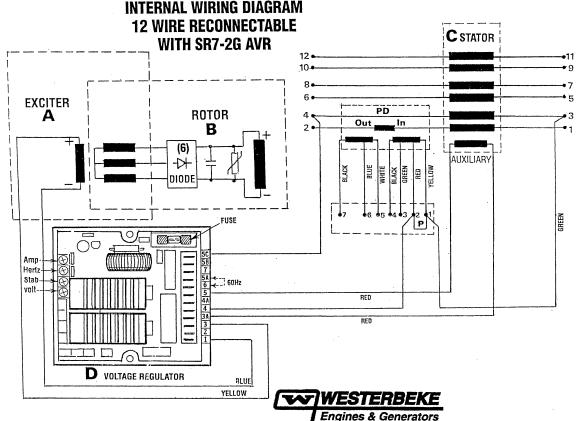
Stab: This potentiometer optimizes alternator performance. If turned clockwise, the stability decreases and the response time decreases but the voltage tends to be less stable. If turned counterclockwise, the response time increases and the voltage tends to be more stable.

In order to adjust this potentiometer correctly, we advise using the following method.

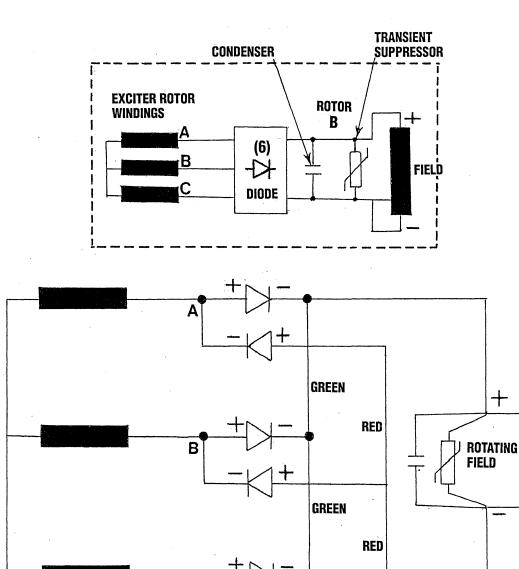
- 1. The generator must be working, starting from zero load and the potentiometer must be at maximum stability (turned fully counterclockwise).
- Slightly turn clockwise until the light generated by the filament lamp oscillates, at this point, turn the potentiometer slowly counterclockwise until the light stabilizes.

ELECTRONIC REGULATION – AVR


Hertz: With this potentiometer, which is normally pre-calibrated then sealed by the manufacturer, it is possible to adjust the low frequency protection intervention. To recalibrate this protection, you must take the generator to a normal zero load condition, turn the potentiometer clockwise until the limit position is reached, then decrease the nominal speed by 10 %. Then turn the potentiometer counterclockwise and measure the voltage value until it has decreased by 5 volts.


When the speed decreases by more than 10% of the nominal value, the voltage also decreases proportionally, blocking generator overheating. Even if we advise calibrating this protection at 10% of the nominal value, it is obviously possible to calibrate the threshold at other values.

Amp: With this potentiometer, it is possible to adjust the intervention level of the overload protection. This protection system has an intervention delay, which permits a temporary overload, necessary when starting motors or similar applications.


To modify this protection, you must overload the generator by 15% of the normal load, turn the potentiometer to minimum (counterclockwise) and wait about twenty seconds. During this period of time the voltage value decreases. In this condition and while turning the potentiometer clockwise, fix the generator voltage value at 10% less than the nominal one. At this point, while the initial overload is being removed, the voltage increases to the nominal value.

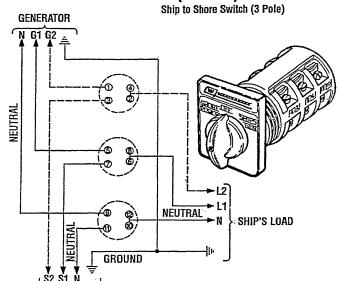
Fuse: The electronic regulator is equipped with a fuse, which protects the alternator from overheating in cases of regulator malfunction. The fuse (250V-5A, quick acting, F type) can be replaced easily.

INTERNAL WIRING SCHEMATIC EXCITER ROTOR/ROTATING FIELD

C

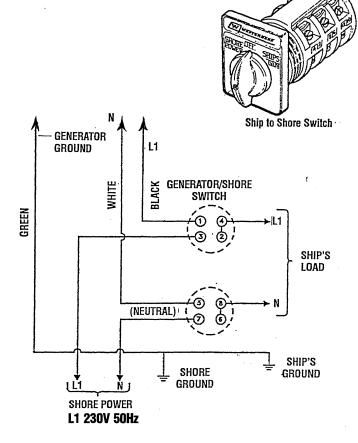
EXCITER ROTOR WINDINGS

ISOLATION DIODE PLATES


BT SHORE POWER TRANSFER SWITCH CONNECTIONS

If the installer connects shore power to the vessel's AC circuit, this must be done by means of the SHORE POWER/OFF/SHIPS GEN. Set the transfer switch shown in the diagrams to the OFF position. This switch prevents simultaneous connection of shore power to generator output.

CAUTION: Damage to the generator can result if utility shore power and generator output are connected at the same time. This type of generator damage is not covered under the warranty; it is the installer's responsibility to make sure all AC connections are correct.


CAUTION: Heavy motor loads should be shut off before switching shore power to generator power or vice-versa because voltage surges induced by switching with heavy AC loads on the vessel being operated may cause damage to the exciter circuit components in the generator.

Shore Power Connections (60 Hertz)

230 Volt/50 Hertz Two Wire Configuration

Notice the repositioning of the white ground lead on the terminal block to the generator case.

SHORE POWER TRANSFER SWITCH AND CONNECTION SHOWN ARE FOR SINGLE PHASE ONLY

NOTE: SHIP TO SHORE SWITCHES ARE AVAILABLE AT YOUR WESTERBEKE DEALER.

NOTE: Diagram shows connections for a two-wire, 120 volt system. For a three-wire system, use the dotted lines for the other hot leg.

SHORE POWER

LAY-UP & RECOMMISSIONING

GENERAL

Many owners rely on their boatyards to prepare their craft, including engines and generators, for lay-up during the off-season or for long periods of inactivity. Others prefer to accomplish lay-up preparation themselves.

The procedures which follow will allow you to perform your own lay-up and recommissioning, or you may use them as a check list if others do the procedures.

These procedures should afford your engine protection during a lay-up and also help familiarize you with the maintenance needs of your engine.

If you have any questions regarding lay-up procedures, call your local servicing dealer; he will be more than willing to provide assistance.

Propeller Shaft Coupling [Propulsion Engine]

The transmission and propeller half couplings should always be opened up and the bolts removed when the boat is hauled out of the water or moved from land to water, and during storage in the cradle. The flexibility of the boat often puts a severe strain on the propeller shaft or coupling or both, while the boat is taken out or put in the water. In some cases, the shaft has actually been bent by these strains. This does not apply to small boats that are hauled out of the water when not in use, unless they have been dry for a considerable period of time.

Fresh Water Cooling Circuit

A 50-50 solution of antifreeze and distilled water is recommended for use in the coolant system at all times. This solution may require a higher concentration of antifreeze, depending on the area's winter climate. Check the solution to make sure the antifreeze protection is adequate.

Should more antifreeze be needed, drain an appropriate amount from the engine block and add a more concentrated mixture. Operate the engine to ensure a complete circulation and mixture of the antifreeze concentration throughout the cooling system. Now recheck the antifreeze solution's strength.

Lubrication System

With the engine warm, drain all the engine oil from the oil sump. Remove and replace the oil filter and fill the sump with new oil. Use the correct grade of oil. Refer to the *ENGINE LUBRICATING OIL* pages in this manual for the oil changing procedure. Run the engine and check for proper oil pressure and make sure there are no leaks.

CAUTION: Do not leave the engine's old engine oil in the sump over the lay-up period. Lubricating oil and combustion deposits combine to produce harmful chemicals which can reduce the life of your engine's internal parts.

Fuel System [Gasoline]

Top off your fuel tanks with *unleaded* gasoline of 89 octane or higher. A fuel conditioner such as *Sta-Bil* gasoline stabilizer should be added. Change the element in your gasoline/water separator and clean the metal bowl. Re-install and make certain there are no leaks. Clean up any spilled fuel.

Fuel System [Diesel]

Top off your fuel tanks with No. 2 diesel fuel. Fuel additives such as *BioBor* and *Diesel Kleen* + *Cetane Boost* should be added at this time to control algae and condition the fuel. Care should be taken that the additives used are compatible with the primary fuel filter/water separator used in the system. Change the element in your primary fuel filter/water separator, if the fuel system has one, and clean the separator sediment bowl.

Change the fuel filter elements on the engine and bleed the fuel system, as needed. Start the engine and allow it to run for 5-10 minutes to make sure no air is left in the fuel system. Check for any leaks that may have been created in the fuel system during this servicing, correcting them as needed. Operating the engine for 5-10 minutes will help allow movement of the treated fuel through the injection equipment on the engine.

Raw Water Cooling Circuit

Close the through-hull seacock. Remove the raw water intake hose from the seacock. Place the end of this hose into a five gallon bucket of clean fresh water. Before starting the engine, check the zinc anode found in the primary heat exchanger on the engine and clean or replace it as required, and also clean any zinc debris from inside the heat exchanger where the zinc anode is located. Clean the raw water strainer.

Start the engine and allow the raw water pump to draw the fresh water through the system. When the bucket is empty, stop the engine and refill the bucket with an antifreeze solution slightly stronger than needed for winter freeze protection in your area.

Start the engine and allow all of this mixture to be drawn through the raw water system. Once the bucket is empty, stop the engine. This antifreeze mixture should protect the raw water circuit from freezing during the winter lay-up, as well as providing corrosion protection.

Remove the impeller from your raw water pump (some antifreeze mixture will accompany it, so catch it in a bucket). Examine the impeller. Acquire a replacement, if needed, and a cover gasket. Do not replace the impeller (into the pump) until recommissioning, but replace the cover and gasket.

Intake Manifold and Thru-Hull Exhaust

Place a clean cloth, lightly soaked in lubricating oil, in the opening of the intake manifold to block the opening. Do not shove the cloth out of sight. (If it is not visible at recommissioning, and an attempt is made to start the engine, you may need assistance of the servicing dealer. Make a note to remove the cloth prior to start-up. The thru-hull exhaust port can be blocked in the same manner.

LAY-UP & RECOMMISSIONING

Starter Motor

Lubrication and cleaning of the starter drive pinion is advisable, if access to the starter permits its easy removal. Make sure the battery connections are shut off before attempting to remove the starter. Take care in properly replacing any electrical connections removed from the starter.

Cylinder Lubrication [Diesel]

If you anticipate a long lay-up period (12 months or more) WESTERBEKE recommends removal of the glow plugs for access to the cylinders. Squirt some Marvel Mystery Oil into each cylinder to help prevent the piston rings from adhering to the cylinder walls. Rotate the engine crankshaft by hand two revolutions and re-install the glow plugs.

If your engine does not have glow plugs, the injectors will have to be removed. Be sure to have replacement sealing washers for the injectors and return fuel line as needed.

Intake Manifold [Gasoline]

Clean the filter screen in the flame arrester, and place a clean cloth lightly soaked in lube oil around the flame arrester to block any opening. Also place an oil-soaked cloth in the through-hull exhaust port, Make a note to remove cloths prior to start-up!

Cylinder Lubrication [Gasoline]

After engine shutdown, remove the spark plugs and spray a small amount of fogging oil into each cylinder. Rotate the crankshaft manually two complete revolutions. Re-install the spark plugs loosely for winter lay-up.

NOTE: At spring commissioning, remove the plugs and rotate the crankshaft two full revolutions. Re-install the spark plugs, tightening properly and connecting the high tension leads fully onto each spark plug.

Batteries

If batteries are to be left on board during the lay-up period, make sure that they are fully charged, and will remain that way, to prevent them from freezing. If there is any doubt that the batteries will not remain fully charged, or that they will be subjected to severe environmental conditions, remove the batteries and store them in a warmer, more compatible environment.

WARNING: Lead acid batteries emit hydrogen, a highly-explosive gas, which can be ignited by electrical arcing or a lighted cigarette, cigar, or pipe. Do not smoke or allow an open flame near the battery being serviced. Shut off all electrical equipment in the vicinity to prevent electrical arcing during servicing.

Transmission [Propulsion Engine]

Check or change the fluid in the transmission as required Wipe off grime and grease and touch up any unpainted areas. Protect the coupling and the output flange with an anti-corrosion coating. Check that the transmission vent is open. For additional information, refer to the *TRANSMISSION SECTION*.

Spare Parts

Lay-up time provides a good opportunity to inspect your Westerbeke engine to see if external items such as drive belts or coolant hoses need replacement. Check your basic spares kit and order items not on hand, or replace those items used during the lay-up, such as filters and zinc anodes. Refer to the SPARE PARTS section of this manual.

Recommissioning

The recommissioning of your Westerbeke engine after a seasonal lay-up generally follows the same procedures as those described in the *PREPARATIONS FOR STARTING* section regarding preparation for starting and normal starts. However, some of the lay-up procedures will need to be counteracted before starting the engine.

- 1. Remove the oil-soaked cloths from the intake manifold.
- Remove the raw water pump cover and gasket and discard the old gasket. Install the raw water pump impeller removed during lay-up (or a replacement, if required). Install the raw water pump cover with a new cover gasket.
- 3. Reinstall the batteries that were removed during the lay-up, and reconnect the battery cables, making sure the terminals are clean and that the connections are tight. Check to make sure that the batteries are fully charged.

CAUTION: Wear rubber gloves, a rubber apron, and eye protection when servicing batteries. Lead acid batteries emit hydrogen, a highly explosive gas, which can be ignited by electrical arcing or a lighted cigarette, cigar, or pipe. Do not smoke or allow an open flame near the battery being serviced. Shut off all electrical equipment in the vicinity to prevent electrical arcing during servicing.

- **4.** Remove the spark plugs, wipe clean, re-gap, and install to proper tightness [gasoline].
- 5. Check the condition of the zinc anode in the raw water circuit and clean or replace the anode as needed. Note that it is not necessary to flush the antifreeze/fresh water solution from the raw water coolant system. When the engine is put into operation, the system will self-flush in a short period of time with no adverse affects. It is advisable, as either an end of season or recommissioning service, to inspect the area where the zinc is located in the heat exchanger and clear any and all zinc debris from that area.
- Start the engine in accordance with procedures described in the PREPARATIONS FOR STARTING section of this manual.

STANDARD AND METRIC CONVERSION DATA

LENGTH-DISTANCE

Inches (in) $\times 25.4 = \text{Millimeters (mm)} \times .0394 = \text{Inches}$ Feet (ft) $\times .305 = \text{Meters (m)} \times 3.281 = \text{Feet}$ Miles $\times 1.609 = \text{Kilometers (km)} \times .0621 = \text{Miles}$

DISTANCE EQUIVALENTS

1 Degree of Latitude = 60 Nm = 111.120 km 1 Minute of Latitude = 1 Nm = 1.862 km

VOLUME

Cubic Inches (in³) x 16.387 = Cubic Centimeters x .061 =in³
Imperial Pints (IMP pt) x .568 = Liters (L) x 1.76 = IMP pt
Imperial Quarts (IMP qt) x 1.137 = Liters (L) x.88 = IMP qt
Imperial Gallons (IMP gal) x 4.546 = Liters (L) x .22 = IMP gal
Imperial Quarts (IMP qt) x 1.201 = US Quarts (US qt) x .833 = IMP qt
Imperial Gallons (IMP gal) x 1.201 = US Gallons (US gal) x .833 = IMP gal
Fluid Ounces x 29.573 = Milliliters x .034 = Ounces
US Pints (US pt) x .473 = Liters(L) x 2.113 = Pints
US Quarts (US qt) x .946 = Liters (L) x 1.057 = Quarts
US Gallons (US gal) x 3.785 = Liters (L) x .264 = Gallons

MASS-WEIGHT

Ounces (oz) \times 28.35 = Grams (g) \times .035 = Ounces Pounds (lb) \times .454 = Kilograms (kg) \times 2.205 = Pounds

PRESSURE

Pounds Per Sq In (psi) x 6.895 = Kilopascals (kPa) x .145 = psi Inches of Mercury (Hg) x .4912 = psi x 2.036 = Hg Inches of Mercury (Hg) x 3.377 = Kilopascals (kPa) x .2961 = Hg Inches of Water (H_2O) x .07355 = Inches of Mercury x 13.783 = H_2O Inches of Water (H_2O) x .03613 = psi x 27.684 = H_2O Inches of Water (H_2O) x .248 = Kilopascals (kPa) x 4.026 = H_2O

TORQUE

Pounds-Force Inches (in-lb) \times .113 = Newton Meters (Nm) \times 8.85 =in-lb Pounds-Force Feet (ft-lb) \times 1.356 = Newton Meters (Nm) \times .738 = ft-lb

VELOCITY

Miles Per Hour (MPH) \times 1.609 = Kilometers Per Hour (KPH) \times .621 = MPH

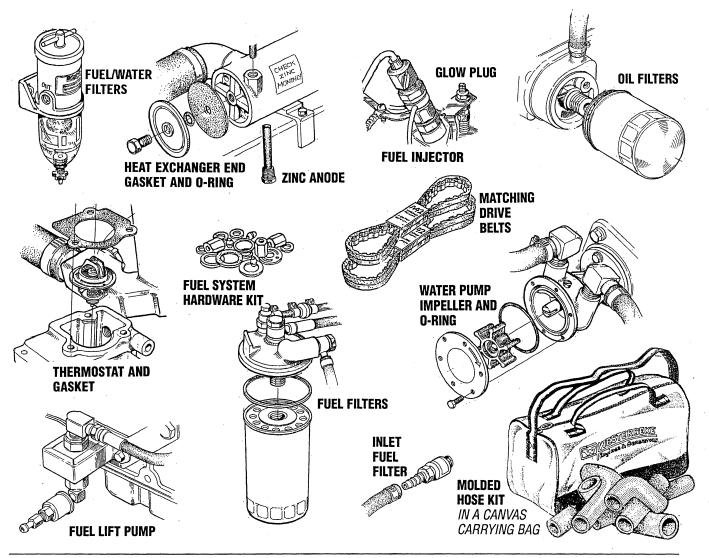
POWER

Horsepower (Hp) x .745 = Kilowatts (Kw) x 1.34 = MPH

FUEL CONSUMPTION

Miles Per Hour IMP (MPG) x .354 = Kilometers Per Liter (Km/L) Kilometers Per Liter (Km/L) x 2.352 = IMP MPG Miles Per Gallons US (MPG) x .425 = Kilometers Per Liter (Km/L) Kilometers Per Liter (Km/L) x 2.352 = US MPG

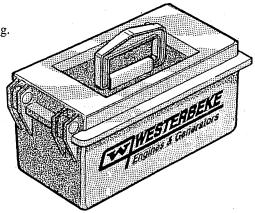
TEMPERATURE


Degree Fahrenheit (°F) = (°C X 1.8) + 32 Degree Celsius (°C) = (°F - 32) x .56

SUGGESTED SPARE PARTS

WESTERBEKE MARINE DIESEL GENERATORS

CONTACT YOUR WESTERBEKE DEALER FOR ADDITIONAL SUGGESTIONS AND INFORMATION

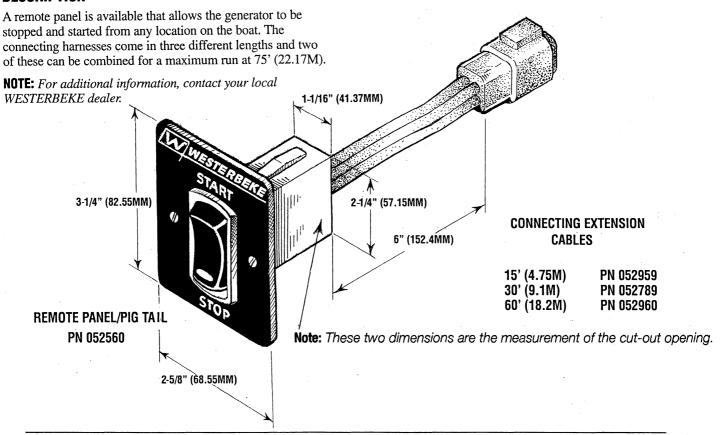

SPARE PARTS KITS

WESTERBEKE also offers two Spare Parts Kits, each packaged in a rugged hinged toolbox. Kit "A" includes the basic spares.

Kit "B" is for more extensive off-shore cruising.

KIT A

ZINC ANODES
DRIVE BELTS
OIL FILTER
FUEL FILTER
HEAT EXCHANGER GASKET
IMPELLER KIT
FUEL SYSTEM HARDWARE KIT
FUEL PUMP INLET FILTER

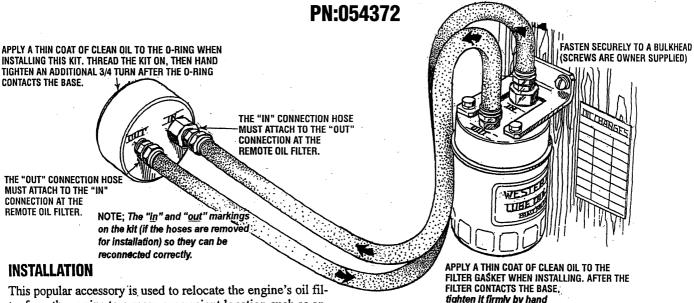


KIT B
ZINC ANODES
DRIVE BELTS
OIL FILTER
FUEL FILTER
HEAT EXCHANGER GASKET
IMPELLER KIT
INJECTOR
OVERHAUL GASKET KIT
GLOW PLUG
FUEL SYSTEM HARDWARE KIT
FUEL PUMP INLET FILTER

REMOTE STOP/START PANEL (OPTIONAL) AND EXTENSION HARNESSES

DESCRIPTION

LCD DISPLAY PANEL EXTENSION CABLES (OPTIONAL)


LENGTH

NMEA MICRO-C

PART NUMBER

053025_ _1/2 METER - 1.6 FEET 053026____ _____1 METER - 3.2 FEET 053027_ _2 METER - 6.5 FEET 053028_ __3 METER - 9.8 FEET 4 METER - 13.1 FEET 053029_ 053030____ ___ 5 METER - 16.4 FEET 053031.... _ 6 METER - 19.6 FEET 053032 ___ __7 METER - 22.9 FEET 053033_ ___ 8 METER - 26.2 FEET _____9 METER - 29.5 FEET 053034___ _10 METER - 32.8 FEET 053035 ____ 053061___ __12.2 METER - 40.0 FEET

REMOTE OIL FILTER (OPTIONAL)

This popular accessory is used to relocate the engine's oil filter from the engine to a more convenient location such as an engine room bulkhead.

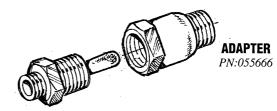
NOTE: Refer to ENGINE OIL CHANGE in this manual for instructions on removing the oil filter.

To install, simply remove the engine oil filter and thread on WESTERBEKE's remote oil filter kit as shown. Always install this kit with the oil filter facing down as illustrated.

Contact your WESTERBEKE dealer for more information.

A CAUTION: It is vital to install the oil lines correctly. If the oil flows in the reverse direction, the by-pass valve in the filter asembly will prevent the oil from reaching the engine, causing an internal engine failure. If there is no oil pressure reading, shutdown immediately and check the hose connections.

BLOCK HEATER 33.0 - 28.5KW (OPTIONAL)


PN:055667 (120V) PN:055668 (240V)

DESCRIPTION

A Block Heater can be installed in the engine block in place of the Block Drain plug which is located on the side of the engine block next to the side oil fill. The Block Heater kits include the power cord and contain items needed to install the heater with illustrated instructions.

Contact your WESTERBEKE DEALER for more information.

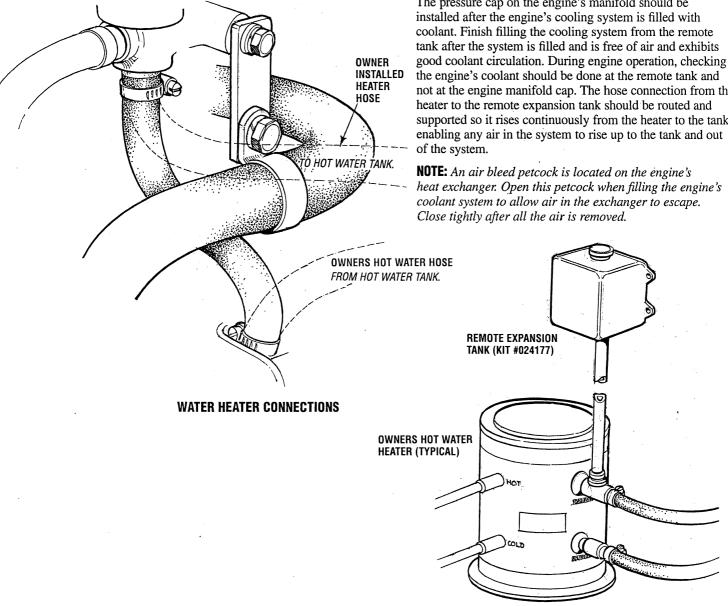
NOTE: The Block Heater must always be immersed in coolant and the Block Heater can not be operated with the engine running.

BLOCK HEATER KIT 240V

PN:055668 INCLUDES A 6' (1.83M) POWER CORD WITH A SCHUKA PLUG (CEE 7/7 230V)

WATER HEATER (OWNERS OPTION)) **INSTALLATION INSTRUCTIONS**

WATER HEATER INSTALLATIONS


THERMOSTAT HOUSING

These engines are equipped with connections for the plumbing of engine coolant to transfer heat to an on-board water heater. The water heater should be mounted in a convenient location either in a high or low position in relation to the engine, so that the connecting hoses from the heater to the engine can run in a reasonably direct line without any loops which might trap air.

Hoses should rise continuously from their low point at the heater to the engine so that air will rise naturally from the heater to the engine. If trapped air is able to rise to the heater, then an air bleed petcock must be installed at the higher fitting on the heater for bleeding air while filling the system.

NOTE: If any portion of the heating circuit rises above the engine's own pressure cap, then a pressurized (aluminum) remote expansion tank (Kit #024177) must be installed in the circuit to become the highest point. Tee the remote expansion tank into the heater circuit, choosing the higher of the two connections for the return. Tee at the heater, and plumb a single line up to the tanks location and the other back to the engine's return. Install the remote expansion tank in a convenient location so the coolant level can easily be checked. The remote expansion tank will now serve as a check and system fill point. The plastic coolant recovery tank is not used when the remote expansion tank kit is installed, since this tank serves the same function. Remove and store the plastic recovery tank if it has been already installed.

The pressure cap on the engine's manifold should be installed after the engine's cooling system is filled with coolant. Finish filling the cooling system from the remote tank after the system is filled and is free of air and exhibits good coolant circulation. During engine operation, checking the engine's coolant should be done at the remote tank and not at the engine manifold cap. The hose connection from the heater to the remote expansion tank should be routed and supported so it rises continuously from the heater to the tank, enabling any air in the system to rise up to the tank and out of the system.

